BORDISM ALGEBRAS OF PERIODIC TRANSFORMATIONS

Nobuo SHIMADA and Ching-Mu WU*

(Received March 16, 1972)

For the equivariant bordism groups of C^{∞}-manifolds with differentiable actions of $S^{1}=U(1)$ and its subgroups Z_{n}, the cases of free actions have been studied by Conner-Floyd [3], Conner [2], Su [11], Uchida [13], Kamata [5, 6] and others.

The purpose of this note is to study the ring structure of bordism for the cases of semi-free actions (cf. Alexander [1], Miščenko [8]).

The authors express their thanks to the referee for his advice and careful reading of the manuscript.

1. The ring structure of $\mathscr{M}_{*}\left(S^{i}\right)(i=1,3)$.

It was shown by Conner-Floyd [3] and Uchida [12] that the following sequences are exact (and also split):

$$
\begin{align*}
& 0 \rightarrow \mathcal{I}_{*}\left(Z_{2}\right) \xrightarrow{\nu} \mathscr{M}_{*}\left(Z_{2}\right) \xrightarrow{\partial} \mathscr{N}_{*}\left(Z_{2}\right) \rightarrow 0 \tag{1.1}\\
& 0 \rightarrow \mathcal{O}_{*}\left(S^{1}\right) \xrightarrow{\nu} \mathscr{M}_{*}\left(S^{1}\right) \xrightarrow{\partial} \Omega_{*}\left(S^{1}\right) \rightarrow 0, \tag{1.2}\\
& 0 \rightarrow \mathcal{O}_{*}\left(S^{3}\right) \xrightarrow{\nu} \mathscr{M}_{*}\left(S^{3}\right) \xrightarrow{\partial} \Omega_{*}\left(S^{3}\right) \rightarrow 0, \tag{1.3}
\end{align*}
$$

where $\mathscr{I}_{*}\left(Z_{2}\right)$ is the bordism group of unoriented manifolds with involution and $\mathcal{O}_{*}\left(S^{i}\right)(i=1,3)$ are the bordism groups of oriented manifolds with semi-free S^{i}-action. Corresponding to these bordsim groups, the cases of free involution and free S^{i}-action are denoted by $\mathcal{I}_{*}\left(Z_{2}\right)$ and $\Omega_{*}\left(S^{i}\right)$ respectively. And \mathscr{M}_{*} $\left(Z_{2}\right)=\Sigma_{k \geq 0} \mathscr{I}_{*}(B O(k)), \mathscr{M}_{*}\left(S^{1}\right)=\Sigma_{k \geq 0} \Omega_{*}(B U(k))$ and $\mathcal{M}_{*}\left(S^{3}\right)=\Sigma_{k \geq 0} \Omega_{*}(B S p(k))$.

The above three exact sequences are apparently analogous, and in fact we can study them under a uniform argument.

Let F denote either one of the fields of real numbers R, complex numbers C, or quaternions H. Let $d=\operatorname{dim}_{R} F$, and let $F P(n)$ denote the n-dimensional projective space.

[^0]
[^0]: *) The second author was supported by the National Science Council of the Republic of China during the preparation of this paper.

