ON THE FREE QUADRATIC EXTENSIONS OF A COMMUTATIVE RING

Kazuo KITAMURA

(Received May 24, 1972)

Let R be a commutative ring with unit element 1 . A quadratic extension of R is an R-algebra which is a finitely generated projective R-module of rank 2. Let $Q(R)$ be the set of all R-algebra isomorphism classes of quadratic extensions of R, and $Q_{s}(R)$ the set of all R-algebra isomorphism classes of separable quadratic extensions of R. In [2], it was shown that the product in $Q_{s}(R)$, in the sense of [1], [4] and [5], is extended to $Q(R)$, and $Q(R)$ is an abelian semigroup with unit element. In this note, we study the quadratic extensions of R which are free R-modules. We shall call them the free quadratic extensions of R. Let $Q_{f}(R)$ and $Q_{f s}(R)$ be the sets of all classes which are free R-modules in $Q(R)$ and $Q_{s}(R)$, respectively. We shall show that $Q_{f}(R)$ is an abelian semigroup with unit element, and $Q_{f s}(R)$ is an abelian group consisting of all invertible elements in $Q_{f}(R)$. For some special rings, we shall determine the structures of $Q_{f}(R)$ and $Q_{f s}(R)$. We remark that $Q_{f s}(R), Q_{s}(R)$ and $\operatorname{Pic}(R)_{2}$; the group of isomorphism classes [U] of R-module U such that $U \otimes_{R} U \cong R$, are closely related by the exact sequence $0 \rightarrow Q_{f s}(R) \rightarrow Q_{s}(R) \rightarrow \operatorname{Pic}(R)_{2}$.

Let R be any commutative ring with unit element 1 . For a free quadratic extension S of R, we can write $S=R \oplus R x$ and $x^{2}=a x+b$ for some a, b in R, then we denote it by $S=(R, a, b)$, and by $[R, a, b]$ the R-algebra isomorphism class containing (R, a, b).

Lemma 1. The following two conditions a) and b) are equivalent;
a) $(R, a, b) \cong(R, c, d)$ as R-algebras,
b) there exist an invertible element α in R and an element β in R such that $c=\alpha$ $(a-2 \beta)$ and $d=\alpha^{2}\left(\beta a+b-\beta^{2}\right)$.

If (R, a, b) and (R, c, d) satisfy a) or $b)$, then we have
c) $c^{2}+4 d=\alpha^{2}\left(a^{2}+4 b\right)$ for some invertible element α in R.

Moreover, if 2 is invertible in R, then we have the converse.
Proof. $\quad a) \rightarrow b): \quad$ Let $\sigma:(R, a, b)=R \oplus R x \rightarrow(R, c, d)=R \oplus R y$ be an R-algebra isomorphism, and set $\sigma(x)=\alpha y+\beta$ and $\sigma^{-1}(y)=\alpha^{\prime} x+\beta^{\prime}$. Sinec $y=\sigma \cdot \sigma^{-1}$ $(y)=\alpha^{\prime} \alpha y+\alpha^{\prime} \beta+\beta^{\prime}$, we have $\alpha^{\prime} \alpha=1$, that is, α and α^{\prime} are invertible. The equalities $(\sigma(x))^{2}=(\alpha y+\beta)^{2}=\alpha(\alpha c+2 \beta) y+\alpha^{2} d+\beta^{2}$ and $\sigma\left(x^{2}\right)=\sigma(a x+b)=\alpha a y$

