Kitamura, K. Osaka J. Math. 10 (1973), 15-20

ON THE FREE QUADRATIC EXTENSIONS OF A COMMUTATIVE RING

KAZUO KITAMURA

(Received May 24, 1972)

Let R be a commutative ring with unit element 1. A quadratic extension of R is an R-algebra which is a finitely generated projective R-module of rank 2. Let Q(R) be the set of all R-algebra isomorphism classes of quadratic extensions of R, and $O_{\bullet}(R)$ the set of all R-algebra isomorphism classes of separable quadratic extensions of R. In [2], it was shown that the product in $Q_s(R)$, in the sense of [1], [4] and [5], is extended to O(R), and O(R) is an abelian semigroup with unit element. In this note, we study the quadratic extensions of R which are free R-modules. We shall call them the *free quadratic extensions* of R. Let $Q_{f}(R)$ and $Q_{fs}(R)$ be the sets of all classes which are free R-modules in Q(R)and $Q_s(R)$, respectively. We shall show that $Q_f(R)$ is an abelian semigroup with unit element, and $Q_{fs}(R)$ is an abelian group consisting of all invertible elements in $Q_{f}(R)$. For some special rings, we shall determine the structures of $Q_f(R)$ and $Q_{fs}(R)$. We remark that $Q_{fs}(R)$, $Q_s(R)$ and $Pic(R)_2$; the group of isomorphism classes [U] of R-module U such that $U \otimes_R U \cong R$, are closely related by the exact sequence $0 \to Q_{fs}(R) \to Q_s(R) \to Pic(R)_2$.

Let R be any commutative ring with unit element 1. For a free quadratic extension S of R, we can write $S=R\oplus Rx$ and $x^2=ax+b$ for some a, b in R, then we denote it by S=(R, a, b), and by [R, a, b] the R-algebra isomorphism class containing (R, a, b).

Lemma 1. The following two conditions a) and b) are equivalent;

- a) $(R, a, b) \simeq (R, c, d)$ as R-algebras,
- b) there exist an invertible element α in R and an element β in R such that $c=\alpha$
- $(a-2\beta)$ and $d=\alpha^2(\beta a+b-\beta^2)$.
 - If (R, a, b) and (R, c, d) satisfy a) or b), then we have
- c) $c^2+4d=\alpha^2(a^2+4b)$ for some invertible element α in R. Moreover, if 2 is invertible in R, then we have the converse.

Proof. a) \rightarrow b): Let σ : $(R, a, b) = R \oplus Rx \rightarrow (R, c, d) = R \oplus Ry$ be an R-algebra isomorphism, and set $\sigma(x) = \alpha y + \beta$ and $\sigma^{-1}(y) = \alpha' x + \beta'$. Since $y = \sigma \cdot \sigma^{-1}(y) = \alpha' \alpha y + \alpha' \beta + \beta'$, we have $\alpha' \alpha = 1$, that is, α and α' are invertible. The equalities $(\sigma(x))^2 = (\alpha y + \beta)^2 = \alpha (\alpha c + 2\beta)y + \alpha^2 d + \beta^2$ and $\sigma(x^2) = \sigma(ax + b) = \alpha ay$