ON THE POTENTIAL TAKEN WITH RESPECT TO COMPLEX-VALUED KERNELS

MINORU MATSUDA

(Received December 24, 1971)

In the potential theory, we have two theorems called the existence theorem concerning the potential taken with respect to real-valued and symmetric kernels. They are stated as follows. Let K(X, Y) be a real-valued function defined in a locally compact Hausdorff space Ω , lower semi-continuous for any points X and Y, may be $+\infty$ for X = Y, always finite for $X \neq Y$ and bounded from above for X and Y belonging to disjoint compact sets of Ω respectively. For a given positive measure μ , the potential is defined by

$$K\mu(X) = \int K(X, Y)d\mu(Y),$$

and the K-energy of μ is defined by $\int K\mu(X)d\mu(X)$. A subset of Ω is said to be of positive K-transfinite diameter, when it charges a positive measure μ of finite K-energy with compact support, otherwise said to be of K-transfinite diameter zero. Let K(X, Y) be symmetric : K(X, Y) = K(Y, X) for any points X and Y. Then we have two following theorems.

Theorem A. Let F be a compact subset of positive K-transfinite diameter, and f(X) be a real-valued upper semi-continuous function with lower bound on F. Then, given any positive number a, there exist a positive measure μ supported by F and a real constant γ such that

(1)
$$\mu(F)=a$$
,

- (2) $K_{\mu}(X) \ge f(X) + \gamma$ on F with a possible exception of a set of K-transfinite diameter zero, and
- (3) $K\mu(X) \leq f(X) + \gamma$ on the support of μ .

Theorem B. In the above theorem, suppose the further conditions : K(X, Y) > 0 and inf f(X) > 0 for any points X and Y of F. Then, given any compact subset F of positive K-transfinite diameter, there exists a positive measure μ supported by F such that

(1) $K_{\mu}(X) \ge f(X)$ on F with a possible exception of a set of K-transfinite diameter zero, and