ON REPRESENTATIONS OF DIRECT PRODUCTS OF FINITE SOLVABLE GROUPS

MICHITAKA HIKARI

(Received January 28, 1971)

Let K be a field and π a finite group. We denote by $G_0(K\pi)$ the Grothendieck ring of $K\pi$. Let π_i be a finite group and M_i be finitely generated $K\pi_i$ -module, i=1, 2. Let us denote by $M_1 \# M_2$ the outer tensor product of M_1 and M_2 . We can define the natural ring homomorphism $\varphi: G_0(K\pi_1) \otimes G_0(K\pi_2) \rightarrow G_0(K(\pi_1 \times \pi_2))$ by putting $\varphi([M_1] \otimes [M_2]) = [M_1 \# M_2]$. In this paper we study the kernel and cokernel of φ .

1. Let π be a finite group, E a finite normal separable extension of K which is a splitting field of π , and $\mathcal{Q}(E/K)$ the Galois group of E over K. Let N be an $E\pi$ -module with character χ and $\sigma \in \mathcal{Q}(E/K)$. Then we define an $E\pi$ -module σN , the conjugate of N, as usual and denote it's character by $\sigma \chi$. We denote the Schur index of N over K by $m_K(N)$.

Now, let π be the direct product of finite groups π_1 and π_2 , $\pi = \pi_1 \times \pi_2$. Let M_i be an irreducible $K\pi_i$ -module, i = 1, 2, and denote an irreducible $E\pi_i$ -component of $M_i^E = M_i \otimes_K E$ by N_i , the character of N_i by ψ_i and the Galois group E over $K(\psi_i)$ by $\mathcal{H}_i = \mathcal{G}(E/K(\psi_i))$. Then, the following results can be found in [3].

(1) If $\sigma, \tau \in \mathcal{G}(E/K)$, then $\sigma N_1 \# \tau N_2$ is an irreducible $E[\pi_1 \times \pi_2]$ -module also and $m_K(N_1 \# N_2) = m_K(\sigma N_1 \# \tau N_2)$.

(2) $M_1 \# M_2$ is completely reducible. $M_1 \# M_2 = k(T_1 \oplus \cdots \oplus T_r)$, where the $\{T_i\}$ are nonisomorphic irreducible $K\pi$ -modules and $k = m_K(N_1)m_K(N_2)/m_K(N_1 \# N_2)$. The $\{T_i\}$ have common K-dimension s, where $s = m_K(N_1 \# N_2)(K(\psi_1, \psi_2): K)$ $(N_1 \# N_2: E)$.

(3) $M_1 \# M_2$ is an irreducible $K\pi$ -module if and only if the following conditions are satisfied:

- (a) $m_K(N_1)m_K(N_2) = m_K(N_1 \# N_2).$
- (b) $\mathcal{G}(E/K) = \mathcal{H}_1 \mathcal{H}_2$.
- (c) $(K(\psi_1):K)(K(\psi_2):K) = (K(\psi_1,\psi_2):K).$

(4) Let $\pi_1 = \pi_2$, $\pi = \pi_1 \times \pi_1$. Let M_1 be an irreducible $K\pi_1$ -module. Then $M_1 \# M_1$ is irreducible if and only if M_1 is an absolutely irreducible $K\pi_1$ -module.

Since for any irreducible $K[\pi_1 \times \pi_2]$ -module M we can find a unique irreducible $K\pi_i$ -module M_i , i=1, 2, satisfying $M_1 \# M_2 \oplus > M$, the following is an immediate corollary to (3).