ON SOME EXTREMAL QUASICONFORMAL MAPPINGS OF DISC

TAKEHIKO SASAKI

(Received June 9, 1970)

1. Introduction

A quasiconformal mapping w(z) of the unit disc $\Delta = \{z \mid |z| < 1\}$ onto itself is known to have continuous boundary values, hence we may consider the class $Q(w; \Delta, \Delta)$ of all quasiconformal mappings of Δ onto itself that coincide with w(z) on the boundary $\partial \Delta = \{z \mid |z| = 1\}$. In $Q(w; \Delta, \Delta)$ there is at least one quasiconformal mapping whose maximal dilatation is a minimum. Such a quasiconformal mapping is called extremal in the class $Q(w; \Delta, \Delta)$. If there exists a regular single-valued analytic function φ defined on Δ and if the complex dilatation μ of a quasiconformal mapping is written in the form

$$\mu = k \frac{\overline{\varphi}}{|\varphi|} \quad (0 < k < 1), \qquad (1)$$

except at zeros of φ , then it is called a Teichmüller mapping corresponding to φ . It was studied by K. Strebel [4] whether a quasiconformal mapping f(z) with the complex dilatation of the form (1) is extremal in the class $Q(f; \Delta, \Delta)$ or not.

In section 2 and section 3 we prove two distortion theorems which serve to show some extremality. In section 4 some extremal quasiconformal mappings which are not Teichmüller mappings in general are considered.

2. Distortion of argument (1)

Let w(z) be a K-quasiconformal mapping which maps |z| < 1 onto |w| < 1 with w(0)=0 and w(1)=1 and let $\arg w(z)=\arg w(re^{i\theta})$ a continuous branch with $\arg w(1)=0$. Then we have

Theorem 1. For all K-quasiconformal mappings which map |z| < 1 onto |w| < 1 with w(0)=0 and w(1)=1, we have

$$\overline{\lim_{r \to 0}} \left| \frac{\arg w(r)}{\log r} \right| \leq \frac{1}{2} \left(K - \frac{1}{K} \right).$$
(2)