Maki, H. Osaka J. Math. 7 (1970), 397-407

EXTENDIBLE VECTOR BUNDLES OVER LENS SPACES MOD 3

HARUO MAKI

(Received March 10, 1970)

1. Introduction. In [5] Schwarzenberger investigated the problem of determing whether a real vector bundle over the real projective space RP^n can be extended to a real vector bundle over RP^m (n < m). In [3], he also investigated the case of the complex tangent bundle of the complex projective space.

The purpose of this note is to prove the non-extendibility of a bundle over lens spases mod 3 by making use of Schwarzenberger's technique ([5]).

Let $S^{2^{n+1}}$ be the unit (2n+1)-sphere. That is

$$S^{2^{n+1}} = \{(z_0, \dots, z_n); \sum_{i=0}^n |z_i|^2 = 1, z_i \in C \text{ for all } i\}$$

Let γ be the rotation of $S^{2^{n+1}}$ defined by

$$\gamma(z_0, \cdots, z_n) = (e^{2\pi i/p} z_0 \cdots, e^{2\pi i/p} z_n).$$

Then γ generates the differentiable transformation group Γ of S^{2n+1} of order p, and lens space mod p is defined to be the orbit space $L^n(p) = S^{2n+1}/\Gamma$ It is a compact differentiable (2n+1)-manifold without boundary and $L^n(2) = RP^{2n+1}$. The Grothendieck rings $\widetilde{KO}(L^n(p))$, $\widetilde{K}(L^n(p))$ were determined by T. Kambe [4]. We recall them in 2. Let $\{z_0, \dots, z_n\} \in L^n(p)$ denote the equivalence class of $(z_0, \dots, z_n) \in S^{2n+1}$. $L^n(p)$ is naturally embedded in $L^{n+1}(p)$ by identifying $\{z_0, \dots, z_n\}$ with $\{z_0, \dots, z_n, 0\}$. Hence $L^n(p)$ is embedded in $L^m(p)$ for n < m. Throughout this note we suppose p=3. Now we state our theorems which shall be proved in 3 and 4.

Let ζ be any *t*-dimensional real bundle over $L^{*}(3)$. Let $p(\zeta)$ be the mod 3 Pontryagin class of ζ

$$p(\zeta) = \sum_{i} p_{i}(\zeta)$$
 where $p_{i}(\zeta) = (-1)^{j} C_{2i}(\zeta \otimes C) \mod 3$.

From the property of the cohomology algebra $H^*(L^n(3); \mathbb{Z}_3)$, we have

$$p_j(\zeta) = d_j x^{2j} ,$$