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1. Introduction

This paper is a sequel to our earlier one [6] and we are concerned also with
the radical of a group algebra of a finite group, especially of a ^-solvable group.
Let G be a finite group of order | G \ :=png', where p is a fixed prime number, n
is an integer 2̂ 0 and (/>,£')=!• Let Sp be a Sylow p-group of G and k a field
of characteristic p. We denote by 9i the radical of the group algebra kG (These
notations will be fixed throughout this paper). Let B be a block of defect d
in kG. Then %IB is the radical of B. First we shall show (9Ϊ5)^=O, when
G is solvable or a />-solvable group with an abelian Sylow />-group. In §3, we
assume Sp is abelian. Let H be a normal subgroup of G and 9t the radical of
kH. It follows from Clifford's Theorem that $Rc9ϊ, hence 2=kG-<3i=<3i'kG
is a two sided ideal contained in ?i. If [G: H] is prime to p, we have 8 = ϊ ί
(Proposition 1 [6]). In another extreme, suppose [G:H]=p. Then we can
show there exists a central element c in 31 such that 3l=%-\-(kG)c. Hence if
G is ^-solvable, SJΪ can be constructed somewhat explicitly using a special type
of a normal sequence of G (Theorem 2). If Sp is normal in G, then ϊί is gen-
erated over kG by the radical of kSp ([7] or Proposition 1 [6]). Hence Theorem
2 may be considered as a generalization of the above fact to the case that Sp is
abelian. In the special case that Sp is cyclic, our main results will be improved
in the final section.

Besides the notation introduced above we use the following; H will always
denote a normal subgroup of G, 5ft the radical of kH and δ=AG 9ΐ. For a
subset T in G, NG(T) and CG(T) are the normalizer and the centralizer of T in
G. For an element x in G, [x] denotes the sum of the elements in the conjugate
class contaning x. Finally, we assume k is a splitting field for every subgroup
of G.

2. Radical of a block

We begin with some considerations on the central idempotents. Let 31=
{η i} be the set of the block idempotents in kH. G induces a permutation group

on SI by Vi~^g~1Vigy g^G Let Sr••$$*> be the set of transitivity. We use the


