A GROUP ALGEBRA OF A p-SOLVABLE GROUP

YUKIO TSUSHIMA

(Received February 2, 1968)

1. Introduction

This paper is a sequel to our earlier one [6] and we are concerned also with the radical of a group algebra of a finite group, especially of a p-solvable group. Let G be a finite group of order $|G| = p^n g'$, where p is a fixed prime number, n is an integer ≥ 0 and (p, g') = 1. Let S_p be a Sylow p-group of G and k a field of characteristic p. We denote by \mathfrak{N} the radical of the group algebra kG (These notations will be fixed throughout this paper). Let B be a block of defect din kG. Then $\mathfrak{N}B$ is the radical of B. First we shall show $(\mathfrak{N}B)^{p^d}=0$, when G is solvable or a p-solvable group with an abelian Sylow p-group. In $\S3$, we assume S_p is abelian. Let H be a normal subgroup of G and \Re the radical of kH. It follows from Clifford's Theorem that $\Re \subset \Re$, hence $\Re = kG \cdot \Re = \Re \cdot kG$ is a two sided ideal contained in \mathfrak{N} . If [G:H] is prime to p, we have $\mathfrak{L}=\mathfrak{N}$ (Proposition 1 [6]). In another extreme, suppose [G:H] = p. Then we can show there exists a central element c in \mathfrak{N} such that $\mathfrak{N}=\mathfrak{L}+(kG)c$. Hence if G is p-solvable, \mathfrak{N} can be constructed somewhat explicitly using a special type of a normal sequence of G (Theorem 2). If S_p is normal in G, then \Re is generated over kG by the radical of kS_{p} ([7] or Proposition 1 [6]). Hence Theorem 2 may be considered as a generalization of the above fact to the case that S_{μ} is abelian. In the special case that S_{p} is cyclic, our main results will be improved in the final section.

Besides the notation introduced above we use the following; H will always denote a normal subgroup of G, \Re the radical of kH and $\Re = kG \cdot \Re$. For a subset T in G, $N_G(T)$ and $C_G(T)$ are the normalizer and the centralizer of T in G. For an element x in G, [x] denotes the sum of the elements in the conjugate class containing x. Finally, we assume k is a splitting field for every subgroup of G.

2. Radical of a block

We begin with some considerations on the central idempotents. Let $\mathfrak{A} = \{\eta_i\}$ be the set of the block idempotents in kH. G induces a permutation group on \mathfrak{A} by $\eta_i \rightarrow g^{-1}\eta_i g, g \in G$. Let $\tilde{\mathfrak{I}}_1 \cdots \tilde{\mathfrak{I}}_s$, be the set of transitivity. We use the