Sugano, K. Osaka J. Math. 4 (1967), 157–160

A NOTE ON AZUMAYA'S THEOREM

Kozo SUGANO

(Received May 4, 1967)

We say that a left Λ -module M is a cogenerator of the category of left Λ -modules if for every submodule N_1 of a left Λ -module N there exists a Λ -homomorphism f from N to M such that $f(N_1) \neq 0$. Let $\{I_{\alpha}\}$ be the full set of non isomorphic irreducible Λ -modules, and $\{E_{\alpha}\}$ be the set of their injective hulls. Then a left Λ -module M is a cogenerator if and only if M contains every E_{α} . In this case the sum of all E_{α} 's is a direct sum by Zorn's Lemma (see Lemma 1[3]). A cogenerator is a faithful module (Lemma 2). The aim of this paper is to compare the ring for which every faithful module is a cogenerator (see G. Azumaya [1]). We assume every ring has units and every module is unitary.

Lemma 1. Let M be a left Λ -module and A be an arbitrary set of index. Then the followings are equivalent.

- (1) M is a cogenerator
- (2) $\sum_{\nu \in A}^{\oplus} M_{\nu} (M_{\nu} \cong M)$ is a cogenerator
- (3) $\Pi_{\nu \in A} M_{\nu} (M_{\nu} \simeq M)$ is a cogenerator

Proof. $(1) \Rightarrow (2) \Rightarrow (3)$ is clear by Lemma 1 [3]. So we shall prove $(3) \Rightarrow (1)$. Choose any E_{α} , then we have Λ -maps $E_{\alpha} \xrightarrow{\tau} \prod M_{\nu} \xrightarrow{\pi_{\nu}} M_{\nu}$ where τ is a monomorphism and π_{ν} are the canonical maps. Let $f_{\nu} = \pi_{\nu} \cdot \tau$ then we see $\bigcap \ker f_{\nu} = 0$. If $\ker f_{\nu} \neq 0$ for every $\nu \in A$, then $I_{\alpha} \subseteq \bigcap \ker f_{\nu} \neq 0$ since I_{α} is irreducible and E_{α} is an essential extension of I_{α} . Hence M_{ν} has an isomorphic image of E_{α} and M is a cogenerator.

Corollary 1. A ring Λ is a self-cogenerator ring if and only if every E_{α} , *i.e.*, $\sum_{\alpha} E_{\alpha}$ is projective.

Proof. If $\sum_{\sigma} E_{\sigma}$ is projective, $\sum_{\sigma} E_{\sigma} < \bigoplus \sum_{\sigma} \Lambda$, and $\sum_{\sigma} \Lambda$ is a cogenerator. Hence Λ is a cogenerator by Lemma 1. Conversely if Λ is a cogenerator, $\Lambda \bigoplus > E_{\sigma}$, and E_{σ} is projective.

Lemma 2. If M is a cogenerator and \mathfrak{l} is a left ideal of Λ , then $\mathfrak{l}=l_{\Lambda}(r_{M}(\mathfrak{l}))$. Hence every cogenerator is faithful. Conversely assume that Λ is a left self-cogenerator ring. Then every faithful module is a cogenerator.