Kumano-go, H. and Shinkai, K. Osaka J. Math. 3 (1966), 155-162

THE CHARACTERIZATION OF DIFFERENTIAL OPERATORS WITH RESPECT TO THE CHARACTERISTIC CAUCHY PROBLEM

HITOSHI KUMANO-GO and KENZO SHINKAI

(Received February 14, 1966)

1. Introduction. Let $L(\lambda, \eta) = \sum_{j=0}^{M} \sum_{k=0}^{N} a_{j,k} \lambda^{j} \eta^{k}$ be a polynomial of λ and η with degrees M and N respectively. Then we can define a constant $\alpha(L)$ as follows. When $L(\lambda, 0) \equiv 0$, we set

$$lpha(L) = \max_{a_{j,k}
i 0, k > 0} rac{m-j}{k}$$
 ,

where *m* is the degree of $L(\lambda, 0)$. In this case we have $j + k\alpha(L) \leq m$ if $a_{j,k} \neq 0$ and $j_0 = k_0 \alpha(L) = m$ for some (j_0, k_0) such that $k_0 > 0$ and $a_{j_0, k_0} \neq 0$. When $L(\lambda, 0) \equiv 0$, we define $\alpha(L) = -\infty$. It is easily shown by the definition of $\alpha(L)$ that the line t=0 is characteristic with respect to the differential operator $L\left(\frac{\partial}{\partial t}, \frac{\partial}{\partial x}\right)$ if and only if $\alpha(L) < 1$. L. Hörmander [3] proved that there exist null solutions¹ of the differential equation Lu=0 with respect to the half plane $\Pi = \{(t, x); t \leq 0\}$ if and only if the line t=0 is characteristic.

In this note we shall characterize the differential operator L by the smallest (largest) function class $G_x(\cdot)^{2}$ of Gevrey's to which null solutions are (not) able to belong. In theorem 1, using the same method as L. Hörmander's in [2], we construct a null solution which belongs to $G_x(\alpha + \varepsilon)$ for any $\varepsilon > 0$ if $0 < \alpha^{3} < 1$, and to $G_x(\alpha)$ if $-\infty \le \alpha \le 0$. In theorem 2, we prove the uniqueness of the solution of the Cauchy

$$\left| \frac{\partial^k}{\partial x^k} f(t, x) \right| \leq K^{k+1} (k!)^{\alpha} \qquad (k=0, 1, 2, \cdots)$$

in any finite interval [a, b] in (x_1, x_2) for some constant K.

¹⁾ A solution u(t, x) of the equation Lu=0 is called a null solution with respect to the half plane II, if $u \in C^{\infty}(R^2)$ and $u \equiv 0$ in R^2 but u=0 in II.

²⁾ A C^{∞} -function f(t, x) is called to be in $G_x(\alpha)$ in $(T_1, T_2) \times (x_1, x_2), -\infty \leq x_1 < x_2 \leq +\infty$, if it satisfies

³⁾ In what follows we write $\alpha = \alpha(L)$.