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1. Introduction

The purpose of this paper is to prove the following

Theorem. For each odd prime p,

for k^p(p-l), n^>k and n + k=Q mod^, where N= min

vp(n + k)j and up(x) is the highest exponent of p dividing the integer x.

This theorem contains one of the result of [5] as a special case.
We shall use the following well-known isomorphism.

n) for n^k-2 [8]

7r2n+2k-2\E(Pn+kyk))

^2n+2k-,(Pn+k, k) for n^>k [4] ,

where E is the suspension, Pm (m — ΐ) complex dimensional projective
space, EPn+k/EPn or Pn+k k the space obtained from EPn+k or Pn+k by
smashing the subcomplex EPn or Pn to a point.

In §2 we recall some material from the homotopy theory of the

sphere and the K-theory, and deduce some results which are used in § 3.
In § 3 we prove the Theorem.

2. Preliminary material

2.1. Denote by an+k r the coefficient of xn+k~l in (ex-l)n+k~r for

I<^r<^t. For any non zero rational number x, if x=pr qs is the
factorization of x into prime powers, we define vp(x) = r. By (5.3), (5.4),
(6.4) and (6.5) in [1], if vp(otnλk r}^Q for l<r<t and a fixed prime
p, then we have that vp(an+k ,+1)^0 with the exceptional case t = s(p — 1),


