Matsunaga, H. Osaka J. Math. 1 (1964), 15–24

UNSTABLE HOMOTOPY GROUPS OF UNITARY GROUPS (odd primary components)

HIROMICHI MATSUNAGA

(Received December 2, 1963)

1. Introduction

The purpose of this paper is to prove the following

Theorem. For each odd prime p,

$${}^{b}\pi_{2n+2k-3}(U(n)) = Z_{n}^{N}$$

 ${}^{p}\pi_{2n+2k-3}(U(n)) = Z_{p}^{N}$ for $k \leq p(p-1)$, n > k and $n+k \equiv 0 \mod p$, where $N = \min\left(\left[\frac{k-1}{p-1}\right], m\right)$ $\nu_p(n+k)$ and $\nu_p(x)$ is the highest exponent of p dividing the integer x.

This theorem contains one of the result of [5] as a special case. We shall use the following well-known isomorphism.

$$\pi_{2n+2k-3}(U(n)) \approx \pi_{2n+2k-2}(EP_{n+k}/EP_n) \text{ for } n \ge k-2 [8]$$

$$\approx \pi_{2n+2k-2}(E(P_{n+k,k}))$$

$$\approx \pi_{2n+2k-3}(P_{n+k,k}) \text{ for } n > k [4],$$

where E is the suspension, P_m (m-1) complex dimensional projective space, EP_{n+k}/EP_n or $P_{n+k,k}$ the space obtained from EP_{n+k} or P_{n+k} by smashing the subcomplex EP_n or P_n to a point.

In $\S2$ we recall some material from the homotopy theory of the sphere and the K-theory, and deduce some results which are used in §3. In §3 we prove the Theorem.

2. **Preliminary** material

2.1. Denote by $\alpha_{n+k,r}$ the coefficient of x^{n+k-1} in $(e^x-1)^{n+k-r}$ for $1 \le r \le t$. For any non zero rational number x, if $x = p^r \cdot q^s \cdot \cdot$ is the factorization of x into prime powers, we define $\nu_{p}(x) = r$. By (5.3), (5.4), (6.4) and (6.5) in [1], if $\nu_p(\alpha_{n+k,r}) \ge 0$ for $1 \le r \le t$ and a fixed prime p, then we have that $\nu_p(\alpha_{n+k,t+1}) \ge 0$ with the exceptional case t=s(p-1),