Supplement to Note on Brauer's Theorem of Simple Groups. II

By Osamu Nagai

The aim of this note is to complete the proof of the following theorem: Let (S5 be a finite group which contains an element P of prime order p which commutes only with its own powers (condition (*)) and assume that (S) is equal to its commutator-subgroup (5' (condition (**)). Then the order g of ($B 5$ is expressed as $g=p(p-1)(1+n p) / t$, where $1+n p$ is the number of conjugate subgroups of order p and t is the number of classes of conjugate elements of order p. If $n \leqq p+2$ and $t \equiv 0$ (mod. 2), then p is of the form $2^{\mu}-1$ and $\mathbb{E} \cong L F\left(2,2^{\mu}\right)$.

In [3], the theorem was proved for the case $n<p+2$ and $t \equiv 0$ (mod. 2) : If $n<p+2$ and $t \equiv 0(\bmod .2)$, under ($*$) and ($* *$), then p is of the form $2^{\mu}-1$ and $\mathbb{G} \cong L F\left(2,2^{\mu}\right)$. In [4], the case $n=p+2$ and $t \equiv 0$ (mod. 2) are discussed, but the equation in p. 230, line 6 is not correct ${ }^{1)}$, this value should be $\omega^{j\left(\mu_{+\nu)}\right)} \cdot(-1)^{j t}$. So the representation of degree $p+1$ may occur. Therefore, in this note, we shall assume that the irreducible representation of degree $p+1$ occurs besides the assumptions ($*$), ($* *$), $n=p+2$ and $t \neq 0$ (mod. 2). Under these assumptions we shall prove that such a group does not exist.

We shall use the same notations as Brauer [1]. First of all, we shall assume that $n=p+2=F(p, 1,2)=F(p, u, 1)$ with positive integer u. For, if n does not have the expression $F(p, u, 1)$ with positive integer u, then the character-relations in $B_{1}(p)$ yields a contradiction easily. Simple computations show that the possible values of the irreducible characters in $B_{1}(p)$ are $1, p+1, u p+1,(u-1) p-1,(u p+1) / t$ and $((u-1) p-1) / t$. In order to consider such characters, we shall prove following lemmas, essentially due to Brauer.

Lemma 1. Under assumptions (*), (**), $n=p+2 t \equiv 0$ (mod. 2), if (53) has an irreducible character A of degree $u p+1(u>1)$, then for the element I of order 2 in the normalizer $\mathfrak{N}(\mathfrak{F})$ of a p-Sylow subgroup \mathfrak{B}

[^0]
[^0]: 1) W. F. Reynolds kindly pointed out this error and gave the auther many useful suggestions. By this error, Theorem in [5] (p. 107) should be corrected as follows; If $2 p-3<n \leqq$ $2 p+3, t \neq 0(\bmod .2)$ and $t>1$, then $2 p+1$ is a prime power and $(\mathbb{F} \cong L F(2,2 p+1)$, unless the irreducible representation of degree $p+1$ occurs. But Theorem in [5] (p. 116) is valid.
