Nagai, Osamu Osaka Math. J. 11 (1959), 147–152.

Supplement to Note on Brauer's Theorem of Simple Groups. II

By Osamu NAGAI

The aim of this note is to complete the proof of the following theorem: Let \mathfrak{G} be a finite group which contains an element P of prime order pwhich commutes only with its own powers (condition (*)) and assume that \mathfrak{G} is equal to its commutator-subgroup \mathfrak{G}' (condition (**)). Then the order g of \mathfrak{G} is expressed as g=p(p-1)(1+np)/t, where 1+np is the number of conjugate subgroups of order p and t is the number of classes of conjugate elements of order p. If $n \leq p+2$ and $t \equiv 0 \pmod{2}$, then p is of the form $2^{\mu}-1$ and $\mathfrak{G} \simeq LF(2, 2^{\mu})$.

In [3], the theorem was proved for the case n < p+2 and $t \equiv 0$ (mod. 2): If n < p+2 and $t \equiv 0$ (mod. 2), under (*) and (**), then p is of the form $2^{\mu}-1$ and $\mathfrak{G} \simeq LF(2, 2^{\mu})$. In [4], the case n=p+2 and $t \equiv 0$ (mod. 2) are discussed, but the equation in p. 230, line 6 is not correct¹), this value should be $\omega^{j(\ell+\nu)} \cdot (-1)^{jt}$. So the representation of degree p+1may occur. Therefore, in this note, we shall assume that the irreducible representation of degree p+1 occurs besides the assumptions (*), (**), n=p+2 and $t \equiv 0 \pmod{2}$. Under these assumptions we shall prove that such a group does not exist.

We shall use the same notations as Brauer [1]. First of all, we shall assume that n=p+2=F(p, 1, 2)=F(p, u, 1) with positive integer u. For, if n does not have the expression F(p, u, 1) with positive integer u, then the character-relations in $B_1(p)$ yields a contradiction easily. Simple computations show that the possible values of the irreducible characters in $B_1(p)$ are 1, p+1, up+1, (u-1)p-1, (up+1)/t and ((u-1)p-1)/t. In order to consider such characters, we shall prove following lemmas, essentially due to Brauer.

Lemma 1. Under assumptions (*), (**), n=p+2 $t \equiv 0 \pmod{2}$, if \mathfrak{G} has an irreducible character A of degree up+1(u>1), then for the element I of order 2 in the normalizer $\mathfrak{N}(\mathfrak{P})$ of a p-Sylow subgroup \mathfrak{P}

¹⁾ W. F. Reynolds kindly pointed out this error and gave the auther many useful suggestions. By this error, Theorem in [5] (p. 107) should be corrected as follows; If $2p-3 < n \leq 2p+3$, $t \equiv 0 \pmod{2}$ and t > 1, then 2p+1 is a prime power and $\mathfrak{E} \simeq LF(2, 2p+1)$, unless the irreducible representation of degree p+1 occurs. But Theorem in [5] (p. 116) is valid.