On Integral Basis of Algebraic Function Fields with Several Variables

By Nobuo Nobusawa

Let K be an algebraic function field with two variables and w a discrete valuation of rank 2 of K. Let L be a finite extension of K and $w_{1}, w_{2}, \cdots, w_{g}$ all the extensions of w in L. We denote the valuation rings of w in K and of w_{i} in L by \mathfrak{v}_{0} and \mathfrak{o}_{i}. It is clear that $\mathfrak{o}=\bigcap_{i=1}^{\mathcal{V}} \mathfrak{o}_{i}$ is the integral closure of \mathfrak{o}_{0} in L. The structure of \mathfrak{o} as an \mathfrak{o}_{0}-module will be determined in this paper. Let $\left(e_{1}^{(i)}, e_{2}^{(i)}\right)$ be the value of ramification of $w_{i}: w_{i}(a)=\left(e_{1}^{(i)}, e_{2}^{(i)}\right) w(a)$ for $a \in K_{.}^{1)}$ The main theorem given in this paper is that 0 is a direct sum of $n_{0}\left(=\sum_{i} e_{1}^{(i)} f_{i}\right) D_{0}$-modules of rank 1 and of $n-n_{0} 0_{0}$-modules of infinite rank where $n=[L: K]$. From this we can easily conclude that L / K has integral basis with respect to w in the classical sense when and only when $e_{2}^{(i)}=1$ for every $i^{2)}$ In order to get the theorem, some lemmas on the independence of valuations of rank 2 will be required, which are proved generalizing naturally the well-known proofs in case of rank 1 . Then we construct concretely n linearly independent basis of L / K which are a generalization of the classical integral basis, having the following property: If $u_{1}, u_{2}, \cdots, u_{n}$ are those generalized integral basis and $\sum c_{i} u_{i} \in \mathfrak{0}$ with c_{i} in K, then $c_{i} u_{i} \in \mathfrak{o}$ for each i.

The above mentioned results will be inductively generalized in general case. Let K be an algebraic function field with several variables and w a discrete valuation of K. Let L be a finite extension of K. We must assume that there holds a fundamental equality with respect to the extensions of w in $L: \sum_{i} e_{i} f_{i}=n$ where e_{i} are the ramification indices of w_{i} and f_{i} are the relative degrees of w_{i}. This equality holds when rank $w+\operatorname{dim} w=n$. (See Roquette [4]. p. 43. Second Criterion.) In this case the main theorem is proved to be true, although we do not discuss the general case in this paper.

[^0]
[^0]: 1) We express $w_{i}(a)$ and $w(a)$ in the normal exponential form and the order of value group will be determined by the last non-zero difference of components (contrary to the usual sense. [5]).
 2) For the definition of integral basis, see [1].
