On Integral Basis of Algebraic Function Fields with Several Variables

By Nobuo Nobusawa

Let K be an algebraic function field with two variables and w a discrete valuation of rank 2 of K. Let L be a finite extension of K and w_1, w_2, \cdots, w_g all the extensions of w in L. We denote the valuation rings of w in K and of w_i in L by o_0 and o_i . It is clear that $\mathfrak{o} = \bigwedge o_i$ is the integral closure of o_0 in L. The structure of o as an o_0 -module will be determined in this paper. Let $(e_1^{(i)}, e_2^{(i)})$ be the value of ramification of $w_i: w_i(a) = (e_1^{(i)}, e_2^{(i)})w(a)$ for $a \in K^{(1)}$. The main theorem given in this paper is that \mathfrak{o} is a direct sum of $n_0(=\sum_{i} e_1^{(i)} f_i) \mathfrak{o}_0$ -modules of rank 1 and of $n - n_0$ o₀-modules of infinite rank where n = [L: K]. From this we can easily conclude that L/K has integral basis with respect to w in the classical sense when and only when $e_2^{(i)} = 1$ for every $i^{(2)}$. In order to get the theorem, some lemmas on the independence of valuations of rank 2 will be required, which are proved generalizing naturally the well-known proofs in case of rank 1. Then we construct concretely *n* linearly independent basis of L/K which are a generalization of the classical integral basis, having the following property: If u_1, u_2, \dots, u_n are those generalized integral basis and $\sum c_i u_i \in \mathfrak{o}$ with c_i in K, then $c_i u_i \in \mathfrak{o}$ for each *i*.

The above mentioned results will be inductively generalized in general case. Let K be an algebraic function field with several variables and w a discrete valuation of K. Let L be a finite extension of K. We must assume that there holds a fundamental equality with respect to the extensions of w in $L: \sum_{i} e_i f_i = n$ where e_i are the ramification indices of w_i and f_i are the relative degrees of w_i . This equality holds when rank $w + \dim w = n$. (See Roquette [4]. p. 43. Second Criterion.) In this case the main theorem is proved to be true, although we do not discuss the general case in this paper.

¹⁾ We express $w_i(a)$ and w(a) in the normal exponential form and the order of value group will be determined by the last non-zero difference of components (contrary to the usual sense. [5]).

²⁾ For the definition of integral basis, see [1].