An Investigation on the Logical Structure of Mathematics (IX)*
 Deductions in the Natural-Number Theory $T_{1}(N)$

By Sigekatu Kuroda

The consistency of the natural-number theory $\mathrm{T}_{1}(\mathrm{~N})$ is proved in Section B, Part (VIII), and the natural-number theory $T_{1}(\mathrm{~N})$ in a generalized sense is defined in $\S 2$, Part (VIII), where $T_{1}(\mathrm{~N})$ denotes the natural-number-theoretic extension of any arbitrary elementary natural-number theory, so that the consistency of $T_{1}(\mathrm{~N})$ can be proved by the same method as that of $T_{1}(N)$. Thus, if we have a series of elementary natural-number theories $\mathrm{T}_{0}(\mathrm{~N}) \subset \mathrm{T}_{0}^{\prime}(\mathrm{N}) \subset \mathrm{T}_{0}^{\prime \prime}(\mathrm{N}) \subset \cdots$, then we have the series of consistent natural-number theories $\mathrm{T}_{1}(\mathrm{~N}) \subset \mathrm{T}_{1}^{\prime}(\mathrm{N}) \subset \mathrm{T}_{1}^{\prime \prime}(\mathrm{N}) \subset \cdots$. By $T_{1}(\mathrm{~N})$ we denote any one of these natural-number theories $\mathrm{T}_{1}(\mathrm{~N})$, $\mathrm{T}_{1}^{\prime}(\mathrm{N}), \mathrm{T}_{1}^{\prime \prime}(\mathrm{N}), \cdots$. But $T_{1}(\mathrm{~N})$ does not denote representatively a subsystem of UL which belongs to a formally defined class of subsystems of UL; the notation $T_{1}(\mathrm{~N})$ is a word belonging to the intuitive language. After fixing some natural-number theory $\mathrm{T}_{1}^{(i)}(\mathrm{N})$ within $T_{1}(\mathrm{~N})$, the possibility of extending further this $\mathrm{T}_{1}^{(i)}(\mathrm{N})$ within $T_{1}(\mathrm{~N})$ remains always open. A fixed $\mathrm{T}_{1}^{(i)}(\mathrm{N})$ has generally various directions of extension within $T_{1}(\mathrm{~N})$, while some extension of $\mathrm{T}_{1}^{(i)}(\mathrm{N})$ may not remain within $T_{1}(\mathrm{~N})$ (Beendigung) or, more strongly, may become inconsistent ${ }^{1)}$ (Hemmung).

This Part is divided into two Sections A and B. In Section A we treat addition and in Section B multiplication. In Section A addition is discussed in detail, while in Section B multiplication is discussed briefly to such an extent that we can know that the multiplication can be treated quite in a similar method as in Section A.

The formulas in Section A are numbered as $\mathrm{N}+k$ and those in Section B as $\mathrm{N} \times k$, where k is the number of a formula in each Section.

[^0]
[^0]: * Continuation of Part (VIII), Nagoya Math. J. 14 (1959), 129-158. Other Parts referred to in this Part are as follows : Part (II), Hamburger Abh. forthcoming; Parts (III) and (IV), Nagoya Math. J. 13 (1958) ; Part (VII), ibid. 14 (1959).

 1) Analogy is found in the definition of Brouwer's spread (Menge). See, for instance, A. Heyting: Intuitionism, Studies in Logic and Foundations of Mathematics, Amsterdam (1956), pp. 32-37, or L.E.J. Brouwer: Zur Begründung der intuitionistischen Mathematik I. Math. Ann. 93 (1925), pp. 244-5.
