Kuroda, Sigekatu Osaka Math. J. **11** (1959), 7-42.

An Investigation on the Logical Structure of Mathematics $(IX)^*$ Deductions in the Natural-Number Theory $T_1(N)$

By Sigekatu KURODA

The consistency of the natural-number theory $T_1(N)$ is proved in Section B, Part (VIII), and the natural-number theory $T_1(N)$ in a generalized sense is defined in §2, Part (VIII), where $T_1(N)$ denotes the naturalnumber-theoretic extension of any arbitrary elementary natural-number theory, so that the consistency of $T_1(N)$ can be proved by the same method as that of $T_1(N)$. Thus, if we have a series of elementary natural-number theories $T_0(N) \subset T'_0(N) \subset T''_0(N) \subset \cdots$, then we have the series of consistent natural-number theories $T_1(N) \subset T'_1(N) \subset T''_1(N) \subset \cdots$. By $T_1(N)$ we denote any one of these natural-number theories $T_1(N)$, $T'_{1}(N), T''_{1}(N), \cdots$. But $T_{1}(N)$ does not denote representatively a subsystem of UL which belongs to a formally defined class of subsystems of UL; the notation $T_1(N)$ is a word belonging to the intuitive language. After fixing some natural-number theory $T_1^{(i)}(N)$ within $T_1(N)$, the possibility of extending further this $T_1^{(i)}(N)$ within $T_1(N)$ remains always open. A fixed $T_1^{(i)}(N)$ has generally various directions of extension within $T_1(N)$, while some extension of $T_1^{(i)}(N)$ may not remain within $T_1(N)$ (Beendigung) or, more strongly, may become inconsistent¹⁾ (Hemmung).

This Part is divided into two Sections A and B. In Section A we treat addition and in Section B multiplication. In Section A addition is discussed in detail, while in Section B multiplication is discussed briefly to such an extent that we can know that the multiplication can be treated quite in a similar method as in Section A.

The formulas in Section A are numbered as N+k and those in Section B as $N \times k$, where k is the number of a formula in each Section.

^{*} Continuation of Part (VIII), Nagoya Math. J. 14 (1959), 129–158. Other Parts referred to in this Part are as follows: Part (II), Hamburger Abh. forthcoming; Parts (III) and (IV), Nagoya Math. J. 13 (1958); Part (VII), ibid. 14 (1959).

¹⁾ Analogy is found in the definition of Brouwer's *spread* (*Menge*). See, for instance, A. Heyting: Intuitionism, Studies in Logic and Foundations of Mathematics, Amsterdam (1956), pp. 32–37, or L.E.J. Brouwer: Zur Begründung der intuitionistischen Mathematik I. Math. Ann. 93 (1925), pp. 244-5.