Mass Distributions on the Ideal Boundaries of Abstract Riemann Surfaces, III

By Zenjiro KURAMOCHI

In the previous paper we defined a function N(z, p) and ideal boundary points and studied some properties of superharmonic functions in \overline{R} , but the mass distributions are only slightly discussed. In the present article, we rewrite pages from 174 to 176 of II^{10} in more precise form and continue the previous work. We use the same notations and definitions as in II.

Theorem 1. Let p be a minimal point and v(p) be a neighbourhood of p. Let $V^{M}(z)$ be a harmonic function in v(p) such that $V^{M}(z) =$ min (M, N(z, p)) on $\partial v(p)$ and $V^{M}(z)$ has M.D.I. over v(p). Put V(z) = $\lim_{M = M'} V^{M}(z) : M' = \sup N(z, p)$. Then N(z, p) - V(z) = N'(z, p) > 0 and N'(z, p)has the same properties as N(z, p).

Suppose $\sup N(z,p) = \infty$, i.e. p is of capacity zero. Assume $V(z) \equiv N(z, p)$. Then $N(z, p) = \int_{\overline{R} - v(p)} N(z, q) d\mu(q)$. Since N(z, p) is harmonic in R, $V(z) = \int_{B^{-v(p)}} N(z, q) d\mu(q)$. If μ is a point mass, $N(z, p) = N(z, q) : q \notin v(p)$, which implies $p = q \notin v(p)$. This is a contradiction. Hence μ is not a point mass. Therefore there exist two positive mass distributions μ_1 and μ_2 such that $\mu = \mu_1 + \mu_2$ and both $V_1(z) = \int N(z, q) d\mu_1(q)$ and $V_2(z) = \int N(z, q) d\mu_2(q)$ are not multiples of N(z, p). Because, if every μ_i presents a multiple of N(z, p) and whose kernel k_i tends to a point $q \notin v(p)$. Then $\lim_{i = \infty} \frac{\mu_i}{\text{total mass of } \mu_i}$ represents $N(z, p) = N(z, q) : q \notin v(p)$. This is also a contradiction. Therefore $N(z, p) - V_1(z)$ (>0) and $V_1(z)$ (>0) are superharmonic in \overline{R} , whence N(z, p) is not minimal. Hence V(z) < N(z, p). Next we show that V(z) has no mass at p in any canonical mass distribution². Then contrary, suppose V(z) has a positive mass at p.

¹⁾ Z. Kuramochi: Mass distributions on the ideal boundaries, II. Osaka Math. Jour., 8, 1956.

²⁾ At present we cannot prove the uniqueness of canonical mass distributions.