Direct, Subdirect Decompositions and Congruence Relations

By Junji Hashimoto

1. Introduction

On the direct decompositions of (universal) algebras, applying to all of groups, rings, linear algebras and lattices, many researches have been made, but almost all of them are concerned with the decompositions into a finite number of factors. In the present paper we attempt to extend those earlier results to the case of infinite factors and clarify the structure of some algebras.

By an algebra A, we shall mean below a set of elements, together with a number of finitary operations f_{α}. Each f_{α} is a single-valued function assigning for some finite $n=n(\alpha)$ to every sequence (x_{1}, \cdots, x_{n}) of n elements of A, a value $f_{\infty}\left(x_{1}, \cdots, x_{n}\right)$ in A. A congruence relation θ on an algebra A is an equivalence relation $x \equiv y(\theta)$ with the substitution property for each f_{α} : If $x_{i} \equiv y_{i}(\theta)$, then $f_{\alpha}\left(x_{1}, \cdots, x_{n}\right) \equiv f_{\alpha}\left(y_{1}, \cdots, y_{n}\right)$ (θ). A congruence relation θ on A generates a homomorphism of A onto the algebra $\theta(A)$ of subsets $C(a, \theta)=\{x ; x \equiv a(\theta)\}$ of A, which we denote by the same notation θ. If we define $\theta \leq \varphi$ to mean that $x \equiv y(\theta)$ implies $x \equiv y(\varphi)$, then all congruence relations on A form a complete, upper continuous lattice $\Theta(A)$, which we shall call the structure lattice of A. By the (complete) direct union $A=\Pi_{\omega \in \Omega} A_{\omega}$ of algebras A_{ω} having the same operations f_{∞} is meant the algebra whose elements are the sets $\left\{x_{\omega} ; \omega \in \Omega\right\}$ with $x_{\omega} \in A_{\omega}$, in which algebraic combination is performed component by component: If $x^{i}=\left\{x_{\omega}^{i} ; \omega \in \Omega\right\}$, then $f_{\alpha}\left(x^{1}, \cdots, x^{n}\right)=\left\{f_{\alpha}\left(x_{\omega}^{1}\right.\right.$, $\left.\left.\cdots, x_{\omega}^{n}\right) ; \omega \in \Omega\right\}$.

Direct factorizations of an algebra A are correlated with the latticetheoretic properties of congruence relations on A; for instance

ThEOREM 1.1. The representations of an algebra A as a direct union $A=A_{1} \times \cdots \times A_{n}$ correspond one-one with the sets of permutable congruence relations $\theta_{1}, \cdots, \theta_{n}$ on A satisfying

$$
\theta_{1} \cap \cdots \cap \theta_{n}=0 \quad \text { and } \quad\left(\theta_{1} \cap \cdots \cap \theta_{i-1}\right) \cup \theta_{i}=I[i=2, \cdots, n] .
$$

But this theorem does not hold for infinite n. We first intend to obtain the corresponding theorem for infinite n, by introducing the con-

