On the Pseudo-Harmonic Functions

By Yukinari Tôki and Kôichi TARUMOTO

Introduction. Let F be an orientable surface. Let u(p) be a realvalued function in a neighborhood N_{p_0} of p_0 on F where N_{p_0} corresponds to the unit circular disc in the complex plane by the topological mapping $z = T_{p_0}(p)$, z = x + iy.

Set
$$u(p) = u(T_{p_0}(p)) = U(z)$$
.

Then u(p) is termed *pseudo-harmonic* at p_0 , if U(z) is harmonic and not identically constant in |z| < 1. A real-valued function on F is termed *pseudo-harmonic* if it is pseudo-harmonic on each point of F. In this paper we will prove that there exist the local parameters such that F is a Riemann surface with respect to them and u(p) is harmonic on F.

1. Terminologies and notations.

Let u(p) be a pseudo-harmonic function on F. By the *level-curve* of u(p) with the *height* c, we mean the locus of the equation u(p) = c. It is well known that with each point $p_0 \in F$, there exists a suitably chosen neighborhood N_{p_0} of p_0 and a topological mapping $z = T_{p_0}(p)$ of N_{p_0} onto |z| < |1 under which p_0 goes into z = 0 and the level-curves of u(p) in N_{p_0} go into the level-curves of $Re z^n$ in $|z| < 1^{1_0}$. we shall term this N_{p_0} a *canonical neighborhood* of p_0 . When n = 1, we shall call p_0 a *regular point* and N_{p_0} a *simple canonical neighborhood*. When $n \ge 2$, we shall call p_0 a *saddle-point* of order n. A real-valued function v(p)on F is called "pseudo-conjugate to a pseudo-harmonic function u(p)", if it satisfies the following condition.

There exists a topological mapping $z = T_{p_0}(p)$ by which N_{p_0} corresponds to |z| < 1, and $U(z) = u(T_{p_0}(p))$ is conjugate-harmonic to $V(z) = v(T_{p_0}(p))$ in |z| < 1.

¹⁾ Y. Tôki, A topological characterization of pseudo-harmonic functions, Osaka Mathematical J. 3 (1951), 101-122. See also J. Jenkins and M. Morse, Topological methods on Riemann surface, pseudoharmonic function. Contributions to the theory of Riemann surfaces 1953 p. 114.