Some Combinatorial Tests of Goodness of Fit

By Masashi Okamoto

1. Introduction. We have recently [1] considered a test of goodness of fit, i.e., a test whether a random sample has come from the population with the specified continuous distribution. We now present a new approach to the same pioblem.

Let X_{1}, \ldots, X_{N} be random variables distributed independently and identically according to the d.f. $F(x)$. To simplify the situation it is assumed that X 's range from 0 to 1 . The hypothesis H_{0} to be tested is that $F(x)$ is identical with the d.f. $F_{0}(x)$ of uniform distribution on the interval $(0,1]$. We divide the interval in n small intervals $((i-1) / n, i / n], i=1, \ldots, n$. In the sequel the word "interval" means if not stated otherwise any of these small intervals. Among $\binom{N}{k}$ k-tuples $\left(X x_{1}, \ldots, X_{\alpha_{k}}\right.$), $1 \leq \alpha_{1}<\cdots<\alpha_{k} \leq N$, we denote by M_{k} the number of those such that $X_{x_{1}}, \ldots, X_{\alpha_{k}}$ fall in the same interval. When we consider one observation, the more uniformly are X_{1}, \ldots, X_{N} (observed values) distributed among the n intervals, the smaller becomes M_{k}, as shown in section 7. On account of this the following test (called M_{k}-test) of H_{0} will be useful: we accept H_{0} when M_{k} is sufficiently small.

It is proved in this paper that when the population distribution satisfies a certain condition M_{k} is asymptotically normally distributed as N and n tend to infinity (Theoiems $1,2,1^{\prime}, 2^{\prime}$). Furthermore M_{k}-test is shown to be consistent (Theorem 3) and unbiased (Theorem 4) against a 1 ather general class of alternatives. The statistics M_{k} are closely related with David's test (cf. [1], [2]) and can be considered as a generalisation of the chi-square test in the case of equal probabitity.
2. Definition of \boldsymbol{U}_{k}. For real numbers t_{1}, \ldots, t_{k} such that $0<t_{1} \leq 1, i=1, \ldots, k$, we define
$\Theta_{k}\left(t_{1}, \ldots, t_{k}\right)=1$, if t_{1}, \ldots, t_{k} fall in the same interval, $=0$, otherwise,
where the word "interval" means by convention any of intervals $((i-1) / n, i / n], i=1, \ldots, n)$. Then

