Some Combinatorial Tests of Goodness of Fit

By Masashi OKAMOTO

1. Introduction. We have recently [1] considered a test of goodness of fit, i.e., a test whether a random sample has come from the population with the specified continuous distribution. We now present a new approach to the same problem.

Let X_1, \ldots, X_N be random variables distributed independently and identically according to the *d.f.* F(x). To simplify the situation it is assumed that X's range from 0 to 1. The hypothesis H_0 to be tested is that F(x) is identical with the *d.f.* $F_0(x)$ of uniform distribution on the interval (0, 1]. We divide the interval in *n* small intervals $((i-1)/n, i/n], i = 1, \ldots, n$. In the sequel the word "interval" means if not stated otherwise any of these small intervals. Among $\binom{N}{k}$ k-tuples $(X_{x_1}, \ldots, X_{x_k}), 1 \leq \alpha_1 < \cdots < \alpha_k \leq N$, we denote by M_k the number of those such that X_{x_1}, \ldots, X_{x_k} fall in the same interval. When we consider one observation, the more uniformly are X_1, \ldots, X_N (observed values) distributed among the *n* intervals, the smaller becomes M_k , as shown in section 7. On account of this the following test (called M_k -test) of H_0 will be useful: we accept H_0 when M_k is sufficiently small.

It is proved in this paper that when the population distribution satisfies a certain condition M_k is asymptotically normally distributed as N and n tend to infinity (Theorems 1, 2, 1', 2'). Furthermore M_k -test is shown to be consistent (Theorem 3) and unbiased (Theorem 4) against a rather general class of alternatives. The statistics M_k are closely related with David's test (cf. [1], [2]) and can be considered as a generalisation of the chi-square test in the case of equal probability.

2. Definition of U_k . For real numbers t_1, \ldots, t_k such that $0 < t_1 \le 1, i = 1, \ldots, k$, we define

$$\Theta_k(t_1, \dots, t_k) = 1$$
, if t_1, \dots, t_k fall in the same interval,
= 0, otherwise,

where the word "interval" means by convention any of intervals ((i-1)/n, i/n], i = 1, ..., n). Then