MEASURE-VALUED DIFFUSIONS AND STOCHASTIC EQUATIONS WITH POISSON PROCESS

ZONGFEI FU and ZENGHU LI

(Received January 7, 2003)

1. Introduction

Suppose that we are given a locally compact metric space *E*. Let *C*(*E*) denote the set of bounded continuous functions on *E*, and *C*₀(*E*) its subset of continuous functions vanishing at infinity. The subsets of non-negative elements of *C*(*E*) and *C*₀(*E*) are denoted respectively by *C*⁺(*E*) and *C*₀⁺(*E*). Let (*P*₁)_{*t*≥0} be a strongly continuous conservative Feller semigroup on *C*₀(*E*) with generator (*A*, $\mathcal{D}(A)$), where $\mathcal{D}_0(A) \subset C_0(E)$, and let $\mathcal{D}(A) = \mathcal{D}_0(A) \cup \{1\}$. Suppose in addition that $b(\cdot) \in$ *C*(*E*) and $c(\cdot) \in C^+(E)$ have continuous extensions to \overline{E} , the one point compactification of *E*, and that $c(\cdot)$ is bounded away from zero.

Let M(E) be the space of finite Borel measures on E equipped with the topology of weak convergence. Let $W = C([0, \infty), M(E))$ be the space of all continuous paths $w: [0, \infty) \to M(E)$. Let $\tau_0(w) = \inf\{s > 0: w(s) = 0\}$ for $w \in W$ and let W_0 be the set of paths $w \in W$ satisfying w(0) = w(t) = 0 for all $t \ge \tau_0(w)$. We fix a metric on M(E) which is compatible with its topology and endow W and W_0 with the topology of uniform convergence. Then for each $\mu \in M(E)$ there is a unique Borel probability measure Q_{μ} on W such that for $f \in \mathcal{D}(A)$,

(1.1)
$$M_t(f) = w_t(f) - \mu(f) - \int_0^t w_s(Af - bf) \, ds, \quad t \ge 0,$$

under ${oldsymbol{\mathcal{Q}}}_{\mu}$ is a martingale with quadratic variation process

(1.2)
$$\langle M(f)\rangle_t = \int_0^t w_s\left(cf^2\right)\,ds, \quad t\ge 0,$$

where $\mu(f) = \int f d\mu$. The system $\{Q_{\mu} : \mu \in M(E)\}$ defines a measure-valued diffusion, which is the well-known Dawson-Watanabe superprocess. In the sequel, we shall simply refer to it as a (A, b, c)-superprocess. We refer the reader to Dawson [1] and the references therein for the construction and basic properties of the process. A mod-

Research supported by NSFC (No. 10131040 and No. 10121101).