TWO DIMENSIONAL WORD WITH 2k MAXIMAL PATTERN COMPLEXITY

TETURO KAMAE and XUE YU-MEI

(Received October 7, 2002)

1. Introduction

For an infinite 1-dimensional word $\alpha = \alpha_0 \alpha_1 \alpha_2 \cdots$ over a finite alphabet *A*, Teturo Kamae and Luca Zamboni [1] introduced the maximal pattern complexity as

 $p_{\alpha}^{*}(k) := \sup_{\tau} \#\{\alpha_{n+\tau(0)}\alpha_{n+\tau(1)}\cdots\alpha_{n+\tau(k-1)}; n = 0, 1, 2, \ldots\}$

where the supremum is taken over all sequences of integers $0 = \tau(0) < \tau(1) < \cdots < \tau(k-1)$ of length k, and $\sharp S$ denotes the cardinality of the set S. They proved that α is eventually periodic if and only if $p_{\alpha}^{*}(k)$ is bounded in k, while otherwise, $p_{\alpha}^{*}(k) \geq 2k$ $(k = 1, 2, \ldots)$.

Teturo Kamae, Rao Hui and Xue Yu-Mei [3] considered the maximal pattern complexity for 2-dimensional words defined on \mathbb{Z}^2 and proved that either $p_{\alpha}^*(k)$ is bounded in k or $p_{\alpha}^*(k) \ge 2k$ (k = 1, 2, ...) if α satisfies a 2-dimensional recurrence condition.

In this paper, we consider the maximal pattern complexity for 2-dimensional words defined on

$$\Omega := \mathbb{N}^2 \setminus \{(0,0)\}.$$

Let $\alpha = (\alpha(x, y)_{(x,y)\in\Omega}) \in A^{\Omega}$ be a 2-dimensional word over $\mathbf{A} = \{0, 1\}$ defined on Ω . Let τ be a finite set in \mathbb{Z}^2 with $(0, 0) \in \tau$ and $\sharp \tau = k$, which is called a *k*-window. For any $i \in \Omega$ with $i + \tau \subset \Omega$, we denote

$$\alpha[i+\tau] := (\alpha(i+j))_{i\in\tau} \in A^{\tau}.$$

We also denote

$$F_{\tau}(\alpha) := \{ (\alpha[i+\tau]; i \in \Omega \text{ with } i+\tau \subset \Omega \}$$

$$p_{\alpha}^{*}(k) := \sup\{ \#F_{\alpha}(\tau); \tau : k \text{-window} \} (k = 1, 2, \ldots).$$

DEFINITION 1. α is called *eventually* 2-*periodic* if there exist $p, q \in \mathbb{Z}_+$ and $a, b \in \mathbb{N}$ such that for any $(x, y) \in \Omega$, $\alpha(x, y) = \alpha(x + p, y)$ holds if $x \ge a$ and $\alpha(x, y) = \alpha(x, y + q)$ holds if $y \ge b$.