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1. Introduction

Let be a Lie group and a closed subgroup of . Consider two submanifolds
in a Riemannian homogeneous space/ , one fixed and the other moving under
in . Let the fixed one be and the moving one be and letµ be the invariant
measure on . By taking the geometric invariant vol(∩ ), volume of the subman-
ifold ∩ , and integrating with respect toµ ( ), we get so called the Poincaré
formula. This can be briefly stated as follows.

Let and be submanifolds of dimensions and respectively, in a
Riemannian homogeneous space/ . Then many works in integral geometry have
been concerned with computing integrals of the following form

∫
vol( ∩ ) µ ( )

The Poincaré formula means equalities which represent theabove integral by some ge-
ometric invariants of submanifolds and of/ . For example in the case that

is the group of isometries of Euclidean spaceR and and are submanifolds
of R then the result of above integral leads to formulas of Poincaré, Crofton and
other integral geometers (see [6]). Especially R. Howard [1] obtained a Poincaré for-
mula for Riemannian homogeneous spaces as follows:

Let and be submanifolds of / with dim +dim = dim( / ). Assume
that is unimodular. Then

(1.1)
∫

♯( ∩ ) µ ( ) =
∫ ∫

×

σ ( ⊥ ⊥ ) µ × ( )

where♯( ) denotes the number of elements in a set andσ ( ⊥ ⊥ ) is defined
by (2.1) in Section 2.
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