ON GALOIS EXTENSION OF RINGS

TERUO KANZAKI

To the memory of TADASI NAKAYAMA

1. Introduction. Let Λ be a ring and G a finite group of ring automorphisms of Λ . The totality of elements of Λ which are left invariant by G is a subring of Λ . We call it the G-fixed subring of Λ . Let $\Delta = \Delta(\Lambda, G) = \sum_{\sigma \in G} \bigoplus \Lambda u_{\sigma}$ be the crossed product of Λ and G with trivial factor set, i.e. $\{u_{\sigma}\}$ is a Λ -free basis of Δ and $u_{\sigma}u_{\tau} = u_{\tau\tau}$, $u_{\tau}\lambda = \sigma(\lambda)u_{\tau}$ for $\lambda \in \Lambda$, and let Γ be a subring of the G-fixed subring of Λ which has the same identity as Λ . Then we have a ring homomorphism

$$\delta: \Delta(\Lambda, G) \to \operatorname{Hom}_{\Gamma}^{r}(\Lambda, \Lambda)$$

defined by $\delta(\lambda u_{\sigma})(x) = \lambda \sigma(x)$, where $\operatorname{Hom}_{\Gamma}^{r}(\Lambda, \Lambda)$ is the Γ -endomorphism ring of Λ regarded as Γ -right module.

In [4], we generalized the notion of Galois extension, which was first defined by Auslander and Goldman [1] for commutative rings, to non commutative case, and discussed the Galois theory for non commutative rings. Our definition of Galois extension is as follows. A ring Λ is called a *Galois extension* of Γ relative to G if the following conditions are satisfied:

I. Γ is the G-fixed subring of Λ ,

II. Λ is a finitely generated projective Γ -right module,

III. δ is an isomorphism of $\mathcal{A}(\Lambda, G)$ to Hom $\Gamma^{r}(\Lambda, \Lambda)$.

On the other hand, Chase, Harrison and Rosenberg [3] gave another definition of Galois extension, which is equivalent to the above in commutative case, and developed a Galois theory for commutative rings. In order to state other definition, we set $Tr(x) = \sum_{\sigma \in G} \sigma(x)$ for $x \in \Lambda$. Then Λ is called to be a Galois extension of Γ relative to G if the following two conditions are satisfied:

CHR I. $\Gamma = Tr(\Lambda)$.

CHR II. There exist x_1, x_2, \ldots and x_r and y_1, y_2, \ldots, y_r in Λ such that Received February 8, 1965.