INVARIANTS OF FINITE REFLECTION GROUPS

LOUIS SOLOMON

To Richard Brauer on his 60th birthday

1. Let K be a field of characteristic zero. Let V be an n-dimensional vector space over K and let S be the graded ring of polynomial functions on V. If G is a group of linear transformations of V, then G acts naturally as a group of automorphisms of S if we define

$$
(r s)(v)=s\left(\gamma^{-1} v\right) \quad r \in G, s \in S, v \in V
$$

The elements of S invariant under all $\gamma \in G$ constitute a homogeneous subring $I(S)$ of S called the ring of polynomial invariants of G.

A linear transformation of V is a reflection if it has finite order and leaves fixed an $n-1$ dimensional subspace, its reflecting hyperplane. If G has finite order and is generated by reflections we call it a finite reflection group. For such groups we know from work of Chevalley [2] and Coxeter [3] that the ring $I(S)$ is a polynomial ring generated by n algebraically independent forms f_{1}, \ldots, f_{n}. In fact, Shephard and Todd [4] have shown that this property of the ring of polynomial invariants characterizes the finite groups generated by reflections. It has been known for a long time, at least for the real orthogonal groups, that the degrees $m_{1}+1, \ldots, m_{n}+1$ of the forms f_{1}, \ldots, f_{n} satisfy the product formula $\left(m_{1}+1\right) \cdots\left(m_{n}+1\right)=g$, where g is the order of G, and that the sum $m_{1}+\cdots+m_{n}$ is equal to the number of reflections in the group. More recently, Shephard and Todd [4] discovered and verified the general formula

$$
\begin{equation*}
\left(1+m_{1} t\right) \cdots\left(1+m_{n} t\right)=g_{0}+g_{1} t+\cdots+g_{n} t^{n} \tag{1}
\end{equation*}
$$

where g_{r} is the number of elements of G that fix some $n-r$ dimensional subspace of V but fix no subspace of higher dimension. If G is a crystallographic group then the Poincare polynomial of the corresponding Lie group is known to be $\left(1+t^{2 m_{1}+1}\right) \cdots\left(1+t^{2 m_{n}+1}\right)$ so that the formula yields a method for com-

