ON A HOPF HOMOTOPY CLASSIFICATION THEOREM

HIROSHI UEHARA

There are various generalizations of Hopf's brilliant theorem, which may be stated, as newly formulated by Alexandroff; all the homotopy classes of the mappings of a compact Hausdorff space X with dim $X \leq n$ into an *n*-sphere S^n are in a (1-1)-correspondence with the elements of the *n*-dimensional Čech cohomology group $H^n(X)$ with integer coefficients.

The object of the present work is to build up a generalization of Hopf's theorem. Let X be a compact Hausdorff space with dim $X \leq n$ and let Y be a connected absolute neighbourhood retract satisfying $\pi_r(Y) = 0$ for each r < n. Making use of Hu's bridge operation introduced recently, addition can be defined in the homotopy classes of mappings of X into Y, so that the set of all the homotopy classes forms a group $\tilde{\mathfrak{P}}_n(X)$. It is also shown that this group is isomorphic to the *n*-th Čech cohomology group $H^n(X, \pi_n(Y))$ of X with coefficient group $\pi_n(Y)$.

1. Let A be an *n*-dimensional finite geometric complex, whose *r*-skelton, for $r \le n$, is usually designated by A^r , and let Y be an arcwise connected topological space with $\pi_r(Y) = 0$ for each r < n. The set \mathcal{Q} of all the mappings of X into Y are separated by the homotopy concept into the mutually disjoint homotopy classes, each of which contains at least one normal mapping f such that $f(X^{n-1}) = y_0$, a fixed point of Y. Throughout the present paper mappings are assumed to be normal.

2. The simplest case where the *n*-th homotopy group $\pi_n(Y)$ (n>1) of Y has a finite base, each element of which is free.

Let us denote a base of $\pi_n(Y)$ by $\{\alpha_1, \ldots, \alpha_{\lambda}\}$ and denote a normal mapping by $f: (A, A^{n-1}) \to (Y, y_0)$. Then we have a characteristic cocycle $c^n(f)$ $= \sum_i (f, \sigma_i^n) \sigma_i^n$ such that $(f, \sigma_i^n) = \sum_{j=1}^{\lambda} r_{ij} \alpha_j$, where r_{ij} is an integer. Considering a complex $P^n = S_1^n \lor S_2^n \lor \ldots \lor S_{\lambda}^n$ constructed by joining *n*-dimensional spheres S_i^n $(i=1\ldots\lambda)$ at a point *, we define a mapping $h: (P^n, *) \to (Y, y_0)$ such

Received April 11, 1951.

The author is deeply grateful to Mr. Shimada for his helpful suggestions and criticisms during the preparation of this paper.