ON A HOPF HOMOTOPY CLASSIFICATION THEOREM

HIROSHI UEHARA

There are various generalizations of Hopf's brilliant theorem, which may be stated, as newly formulated by Alexandroff; all the homotopy classes of the mappings of a compact Hausdorff space X with $\operatorname{dim} X \leqq n$ into an n sphere S^{n} are in a (1-1)-correspondence with the elements of the n-dimensional Čech cohomology group $H^{n}(X)$ with integer coefficients.

The object of the present work is to build up a generalization of Hopf's theorem. Let X be a compact Hausdorff space with $\operatorname{dim} X \leqq n$ and let Y be a connected absolute neighbourhood retract satisfying $\pi_{r}(Y)=0$ for each $r<n$. Making use of Hu's bridge operation introduced recently, addition can be defined in the homotopy classes of mappings of X into Y, so that the set of all the homotopy classes forms a group $\tilde{\mathfrak{g}}_{n}(X)$. It is also shown that this group is isomorphic to the n-th Čech cohomology group $H^{n}\left(X, \pi_{n}(Y)\right)$ of X with coefficient group $\pi_{n}(Y)$.

1. Let A be an n-dimensional finite geometric complex, whose r-skelton, for $r \leqq n$, is usually designated by A^{r}, and let Y be an arcwise connected topological space with $\pi_{r}(Y)=0$ for each $r<n$. The set Ω of all the mappings of X into Y are seperated by the homotopy concept into the mutually disjoint homotopy classes, each of which contains at least one normal mapping f such that $f\left(X^{n-1}\right)=y_{0}$, a fixed point of Y. Throughout the present paper mappings are assumed to be normal.
2. The simplest case where the n-th homotopy group $\pi_{n}(Y)(n>1)$ of Y has a finite base, each element of which is free.

Let us denote a base of $\pi_{n}(Y)$ by $\left\{\alpha_{1}, \ldots, \alpha_{\lambda}\right\}$ and denote a normal mapping by $f:\left(A, \mathrm{~A}^{n-1}\right) \rightarrow\left(Y, y_{0}\right)$. Then we have a characteristic cocycle $c^{n}(f)$ $=\sum_{i}\left(f, \sigma_{i}^{n}\right) \sigma_{i}^{n}$ such that $\left(f, \sigma_{i}^{n}\right)=\sum_{j=1}^{\lambda} r_{i j} \alpha_{j}$, where $r_{i j}$ is an integer. Considering a complex $P^{n}=S_{1}^{n} \vee S_{2}^{n} \vee \ldots \vee S_{\lambda}^{n}$ constructed by joining n-dimensional spheres $S_{i}^{n}(i=1 \ldots \lambda)$ at a point $*$, we define a mapping $h:\left(P^{n}, *\right) \rightarrow\left(Y, y_{0}\right)$ such

Received April 11, 1951.
The author is deeply grateful to Mr. Shimada for his helpful suggestions and criticisms during the preparation of this paper.

