Seiya Sasao and Yutaka Ando Nagoya Math. J. Vol. 42 (1971), 23-29

KSO-GROUPS FOR 4-DIMENSIONAL CW-COMPLEXES

SEIYA SASAO AND YUTAKA ANDO

§0. In this paper we shall determine KSO-groups for 4-dimensional CWcomplexes by their cohomology rings. We denote by KSO(X) the group of
orientable stable vector bundles over X. In 1959 A. Dold and H. Whitney
[1] gave the classification of SO(n)-bundles over a 4-complex. It seems,
however, to the authors that group structures of them are unknown. We
shall give another definition of the difference bundles defined in [1], and we
determine the group structure of KSO(X).

§1. For a finite 4-dimensional CW-complex X, we denote by X_3 its 3-skeleton, by X/X_3 a complex obtained from X by contracting X_3 to a point in X, and by EX_3 the suspension of X_3 . The following exact sequence is obtained from Puppe's sequence.

(I) $\longrightarrow KSO(EX_3) \xrightarrow{j^*} KSO(X/X_3) \xrightarrow{p^*} KSO(X) \xrightarrow{i^*} KSO(X_3) \longrightarrow 0.$

At first we define a map W_k : $KSO(X) \longrightarrow H^k(X; \mathbb{Z}_2)$ which assigns to each bundle over X its k-th Whitney class. The following lemma is well known.

LEMMA 1-1. The homomorphism W_2 : $KSO(X_3) \longrightarrow H^2(X_3; Z_2)$ is an isomorphism.

Secondly we define a map $P_1: KSO(X) \longrightarrow H^4(X; Z)$ which assigns to each element of KSO(X) its first Pontrjagin class. Then we have

LEMMA 1-2.¹⁾ For any finite CW-complex X, the map $P_1: KSO(X) \longrightarrow H^4(X;Z)$ is a group homomorphism.

Proof. If ξ and η are orientable stable vector bundles over X, we can take $\tilde{\xi}: X \longrightarrow BSO(m)$ and $\tilde{\eta}: X \longrightarrow BSO(n)$ as their classifying maps for

¹⁾ This lemma and its proof are suggested to the authors by the referee, and the original lemma was proved under the condition that dim $X \leq 4$.