ON THE FINITE SUBGROUPS OF GL (3, Z)

KEN-ICHI TAHARA

Introduction

We should like to study three dimensional algebraic tori in the same way as Voskresenskii does in [14] and [15]. To do so, it is necessary to determine all finite subgroups of $G L(3, \boldsymbol{Z})$ up to conjugacy.

We find in Serre [11] that the order of any finite subgroup of $G L(3, \boldsymbol{Z})$ is at most $N(n)$, where $N(n)$ is the greatest common divisor of $2^{n^{2}}\left(2^{n}-1\right)\left(2^{n}-2\right)$ $\cdots \cdot\left(2^{n}-2^{n-1}\right)$ and $\left(p^{n}-1\right)\left(p^{n}-p\right) \cdots\left(p^{n}-p^{n-1}\right)$ for every odd prime p. According to Serre himself*, this estimate was first obtained by Minkowski [16]. This estimate, however, is not the best possible. For example, when $n=2$, the greatest of the orders of all finite subgroups is $2^{2} \cdot 3=12$ (cf. Serre, ibid.), while $N(n)=48$. We refer the reader to a sharper estimate of the orders of all finite subgroups of $G L(n, \boldsymbol{Z})$ by Minkowski [17]. According to this, the greatest is not larger than $2^{4} \cdot 3=48$ when $n=3$. In this paper we show that this is the best possible, and further determine all the finite subgroups of $G L(3, \boldsymbol{Z})$ (resp. $S L(3, \boldsymbol{Z})$) up to conjugacy.

First of all, we find all non-conjugate cyclic subgroups of $G L(3, \boldsymbol{Z})$. By Vaidyanathaswamy [12] and [13], any element of $G L(3, \boldsymbol{Z})$ has order 1, 2, 3, 4, 6 or ∞ : namely $\varphi(m) \leq 2$ only for $m=1,2,3,4$ or 6 , where $\varphi(m)$ is Euler's function. Hence the order of any finite cyclic subgroup of $G L(3, \boldsymbol{Z})$ is 1,2 , 3,4, or 6 . Reiner [10] determined all non-conjugate cyclic subgroups of order m in $G L(3, \boldsymbol{Z})$ for prime numbers $m=2$ and 3 . Therefore we must determine all non-conjugate cyclic subgroups of order m in $G L(3, \boldsymbol{Z})$ for $m=4$ and $6 .{ }^{1)}$

Next we determine all non-conjugate non-cyclic subgroups of $G L(3, \boldsymbol{Z})$. Since each element of $G L(3, \boldsymbol{Z})$ has order $1,2,3,4,6$ or ∞, the order of any

[^0]
[^0]: Received February 26, 1970.
 *) We wish to thank Professor J.-P. Serre for kindly informing us of the results of Minkowski and for giving us helpful several comments to the first draft of this paper.

 1) For $m=6$, see Matuljauskas [7].
