Ken-ichi Tahara Nagoya Math. J. Vol. 41 (1971), 169–209

ON THE FINITE SUBGROUPS OF GL (3, Z)

KEN-ICHI TAHARA

Introduction

We should like to study three dimensional algebraic tori in the same way as Voskresenskii does in [14] and [15]. To do so, it is necessary to determine all finite subgroups of $GL(3, \mathbb{Z})$ up to conjugacy.

We find in Serre [11] that the order of any finite subgroup of $GL(3, \mathbb{Z})$ is at most N(n), where N(n) is the greatest common divisor of $2^{n^2}(2^n-1)(2^n-2)$ $\cdots (2^n-2^{n-1})$ and $(p^n-1)(p^n-p)\cdots (p^n-p^{n-1})$ for every odd prime p. According to Serre himself*, this estimate was first obtained by Minkowski [16]. This estimate, however, is not the best possible. For example, when n = 2, the greatest of the orders of all finite subgroups is $2^2 \cdot 3 = 12$ (cf. Serre, ibid.), while N(n) = 48. We refer the reader to a sharper estimate of the orders of all finite subgroups of $GL(n, \mathbb{Z})$ by Minkowski [17]. According to this, the greatest is not larger than $2^4 \cdot 3 = 48$ when n = 3. In this paper we show that this is the best possible, and further determine all the finite subgroups of $GL(3, \mathbb{Z})$ (resp. $SL(3, \mathbb{Z})$) up to conjugacy.

First of all, we find all non-conjugate cyclic subgroups of $GL(3, \mathbb{Z})$. By Vaidyanathaswamy [12] and [13], any element of $GL(3, \mathbb{Z})$ has order 1, 2, 3, 4, 6 or ∞ : namely $\varphi(m) \leq 2$ only for m = 1, 2, 3, 4 or 6, where $\varphi(m)$ is Euler's function. Hence the order of any finite cyclic subgroup of $GL(3, \mathbb{Z})$ is 1, 2, 3, 4, or 6. Reiner [10] determined all non-conjugate cyclic subgroups of order m in $GL(3, \mathbb{Z})$ for prime numbers m = 2 and 3. Therefore we must determine all non-conjugate cyclic subgroups of order m in $GL(3, \mathbb{Z})$ for m = 4 and $6.^{1}$

Next we determine all non-conjugate non-cyclic subgroups of $GL(3, \mathbb{Z})$. Since each element of $GL(3, \mathbb{Z})$ has order 1, 2, 3, 4, 6 or ∞ , the order of any

Received February 26, 1970.

^{*)} We wish to thank Professor J.-P. Serre for kindly informing us of the results of Minkowski and for giving us helpful several comments to the first draft of this paper.

¹⁾ For m=6, see Matuljauskas [7].