Marston Morse and Stewart Scott Cairns Nagoya Math. J. Vol. 39 (1970), 167–198

ELEMENTARY QUOTIENTS OF ABELIAN GROUPS, AND SINGULAR HOMOLOGY ON MANIFOLDS

MARSTON MORSE AND STEWART SCOTT CAIRNS

§ 0. Introduction. The topological origin of the problem. Let there be given a compact topological manifold M_n . If M_n admits a "triangulation" it is known that the fundamental invariants, namely the connectivities of M_n over fields, the Betti numbers and torsion coefficients over Z of the singular homology groups of M_n , are finite and calculable. However it is not known that a "triangulation" of M_n always exists when n > 3.

Singular homology groups are understood in the sense of Eilenberg [1]. An alternative to triangulation of M_n . When M_n is differentiable, of at least class C^2 , the alternative to the hypothesis of triangulation will be understood to be the existence of a differentiable non-degenerate (ND) function¹⁾ f on M_n . When M_n is not known to be so differentiable the alternative will be understood to be the existence in the sense of [2] of a topologically non-degenerate (TND) function¹⁾ f on M_n .

We shall be concerned with the subsets

(0, 0)
$$f_c = \{ p \in M_n | f(p) \le c \}$$

of M_n where c is an arbitrary value of f on M_n and shall term f_c a sublevel set of M_n .

In a series of papers which make no use of a triangulation of M_n we shall show that the fundamental invariants of the singular homology groups \mathbb{J} of the sublevel sets f_c of M_n are uniquely determined by suitable relative numerical invariants associated with the respective critical points on f_c of

Received April 21, 1969.

Professor Morse's research was supported in part by U.S. Army Research Office-Durham grant DA-31-124-ARO-D-455.

Professor Cairns' research was supported in part by National Science Foundation grant GP8640.

¹) The function f can and will be chosen so as to have different values a at different critical points of f.