H. Kunita Nagoya Math. J. Vol. 38 (1970), 41–52

STOCHASTIC INTEGRALS BASED ON MAR-TINGALES TAKING VALUES IN HILBERT SPACE

HIROSHI KUNITA

To Professor Katuzi Ono on the occasion of his 60th birthday

Let *H* be a separable Hilbert space with inner product (,) and norm || ||. We denote by *K* the set of all linear operators on *H*. Let $(\Omega, \mathfrak{F}, P)$ be a probability space and suppose we are given a family of σ -fields \mathfrak{F}_t , $t \geq 0$ such that $\mathfrak{F}_s \subseteq \mathfrak{F}_t \subseteq \mathfrak{F}$ for $0 \leq s \leq t$ and $\bigcap_{\epsilon>0} \mathfrak{F}_{t+\epsilon} = \mathfrak{F}_t$. We assume further that each \mathfrak{F}_t is complete relative to the probability measure *P*. A mapping $X_t(\omega)$; $[0, \infty) \times \Omega \to H$ is called an *H*-valued stochastic process or shortly *H*-process if (f, X_t) is a scalar valued (real or complex) stochastic process for all $f \in H$. In particular, if (f, X_t) is a martingale for every $f \in H$, X_t is called an *H*-martingale.

The purpose of this article is to define two types of stochastic integrals by *H*-martingale $\int_0^t (\Phi_1(s, \omega), dX_s(\omega))$ and $\int_0^t \Phi_2(s, \omega) dX_s(\omega)$ and to establish a formula concerning these stochastic integrals. Here $\Phi_i(s, \omega)$, i = 1, 2 is *H*or *K*-process, respectively, with suitable additional conditions. Similar problem concerning Hilbert space valued Brownian motion has been discussed by Daletskii [1].

1. Preliminaries. Let X be an H-random variable. Then $||X(\omega)||$ is clearly an \mathfrak{F} -measurable real random variable. We suppose $E||X|| < \infty$. For a given sub σ -field \mathfrak{G} of \mathfrak{F} , we define the *conditional expectation* of X relative to \mathfrak{G} , denoted by $E(X|\mathfrak{G})$, in the following manner; $E(X|\mathfrak{G})$ is an H-random variable such that $(f, E(X|\mathfrak{G}))$ is \mathfrak{G} -measurable and $(f, E(X|\mathfrak{G})) = E((f, X)|\mathfrak{G})$ holds for every $f \in H$. Such $E(X|\mathfrak{G})$ is unique up to measure 0. Then an H-process X_t such that $E||X_t|| < \infty$, $\forall t \ge 0$, is an H-martingale if and only if $E(X_t|\mathfrak{F}_s) = X_s$ holds for every $t \ge s$.

Received March 31, 1969