S. Ihara Nagoya Math. J. Vol. 37 (1970), 121–130

ON ε-ENTROPY OF EQUIVALENT GAUSSIAN PROCESSES

SHUNSUKE IHARA

To Professor Katuzi Ono on the occasion of his 60th birthday

§1. Introduction.

Let $\xi = \{\xi(t); t \in T\}$ be a stochastic process, where T is a finite interval. The ε -entropy $H_{\varepsilon}(\xi)$ of ξ is defined as the following quantity:

(1)
$$H_{\varepsilon}(\xi) = \inf_{\eta} I(\xi, \eta),$$

where $I(\xi, \eta)$ is the amount of information about ξ contained in an another stochastic process $\eta = \{\eta(t); t \in T\}$ and the infimum is taken for all stochastic processes η satisfying the condition:

(2)
$$\int_{T} E |\xi(t) - \eta(t)|^2 dt \leq \varepsilon^2.$$

Concerning the ε -entropy of Gaussian processes, M.S. Pinsker has got an explicit expression of it in terms of the spectral measure. More precisely, let $\xi = \{\xi(t); t \in T\}$ be a real valued mean continuous Gaussian process. We denote by r(s, t) the covariance function of ξ , i.e. $r(s, t) = E\{(\xi(s) - E\xi(s)) | (\xi(t) - E\xi(t))\}$, and we define an integral operator on the space $L^2(T)$ by the following:

(3)
$$K\varphi(t) = \int_T r(s,t)\varphi(s)ds, \quad \varphi \in L^2(T), \quad t \in T.$$

Then K is a symmetric Hilbert-Schmidt operator with countable nonnegative eigenvalues $\{\lambda_n\}_{n=1}^{\infty}$. Using these eigenvalues, the ε -entropy of ξ is expressed in the form:

(4)
$$H_{\varepsilon}(\xi) = \frac{1}{2} \sum_{n=1}^{\infty} \log \left[\max\left(\frac{\lambda_n}{\theta^2}, 1\right) \right],$$

Received March 4, 1969