H. Yokoi Nagoya Math. J. Vol. 33 (1968), 139-152

ON REAL QUADRATIC FIELDS CONTAINING UNITS WITH NORM -1

HIDEO YOKOI

Let Q be the rational number field, and let $K = Q(\sqrt{D}) (D > 0$ a rational integer) be a real quadratic field. Then, throughout this paper, we shall understand by the fundamental unit ε_D of $Q(\sqrt{D})$ the normalized fundamental unit $\varepsilon_D > 1$.

Recently H. Hasse investigated variously real quadratic fields with the genus 1, but with the class number more than one¹). However, since he needed there to know a explicit form of the fundamental unit of a real quadratic field, his investigation had naturally to be restricted within the case of real quadratic fields of Richaud-Degert type whose fundamental units were already given explicitly.

In this paper, we shall give explicitly the fundamental units of real quadratic fields of the more general type than Richaud-Degert's in the case of real quadratic fields with the fundamental unit ε satisfying $N\varepsilon = -1$, and consider the class number of real quadratic fields of this type as Hasse did in the case of Richaud-Degert type.

In §1, by means of expressing any unit $\varepsilon = (t + u\sqrt{D})/2$ of $Q(\sqrt{D})$ as a function of t, we shall give first a generating function of all real quadratic fields with the fundamental unit whose norm is equal to -1 (Theorem 1). In §2, by means of classifying all units $\varepsilon = (t + u\sqrt{D})/2$ with $N\varepsilon = -1$ by the positive value of u, we shall prove that in the class of u = p or 2p (p is 1 or prime congruent to 1 mod 4) the unit $\varepsilon = (t + u\sqrt{D})/2 > 1$ becomes the fundamental unit of $Q(\sqrt{D})$ except for at most finite number of values of D (Theorem 2 and its Corollary). Moreover, we shall show that real quadratic fields of Richaud-Degert type essentially correspond to real quadratic fields with the fundamental unit belonging to the class of u = 1 or 2 in such classification (Proposition 2). In §3, we shall give an estima-

Received February 21, 1968.

¹⁾ Cf. H. Hasse [3].