NOTE ON SCHIFFER'S VARIATION IN THE CLASS OF UNIVALENT FUNCTIONS IN THE UNIT DISC

KIKUJI MATSUMOTO

1. Let S denote the class of univalent functions f(z) in the unit disc D: |z| < 1 with the following expansion:

(1)
$$f(z) = z + a_2 z^2 + a_3 z^3 + \cdots + a_n z^n + \cdots$$

We denote by $f_n(z)$ the extremal function in S which gives the maximum value of the real part of a_n and by D_n the image of D under $w = f_n(z)$. Schiffer proved in his papers [1] and [2] by using his variational method that the boundary of D_n consists of analytic slits w = w(t), t being a real parameter, satisfying

(2)
$$\left(\frac{dw}{dt}\right)^2 \frac{1}{w} \sum_{k=2}^n \frac{a_n^{(k)}}{w^k} < 0,$$

where $a_n^{(k)}$ is the *n*th coefficient of $f_n(z)^k = \sum_{\nu=k}^{\infty} a_{\nu}^{(k)} z^{\nu}$, so that follows from the Schwarz reflection principle

(3)
$$\frac{z^2 f_n'(z)^2}{f_n(z)} \sum_{k=2}^n \frac{a_n^{(k)}}{f_n(z)^k} = (n-1)a_n + \sum_{k=1}^{n-1} k \left(\frac{a_k}{z^{n-k}} + \bar{a}_k z^{n-k} \right)$$

in the z-plane. Thus the left-hand side of (3) is due to a variation of the range D_n . In this note, we shall show that the right-hand side of (3) is due to a variation of the domain D.

2. For a complex number τ , a real number τ and a sufficiently small r>0, we consider the finite w-plane slit along the segment $S(\tau; r, \tau)$ with end points $\tau-re^{i\tau}$ and $\tau+re^{i\tau}$ and denote it by $\Omega(\tau; r, \tau)$. For ω , $-1<\omega<1$, let $\Lambda^+(\tau; r, \tau, \omega)$ and $\Lambda^-(\tau; r, \tau, \omega)$ be the circular arcs with end points $\tau-re^{i\tau}$ and $\tau+re^{i\tau}$ where they make with $S(\tau; r, \tau)$ inner angles being equal to $\pi\omega$. We denote by $\Delta(\tau; r, \tau, \omega)$ the domain which is