ON SIGNED BRANCHING MARKOV PROCESSES WITH AGE

TUNEKITI SIRAO

To Professor Kiyoshi Noshiro on the occasion of his 60th birthday

§1. Introduction. Many authors have considered branching Markov processes for the probabilistic treatment of semi-linear equations. Recently J.E. Moyal [11], [12] gave a formulation for a wide class of branching processes. A similar idea was used in A.V. Skorohod [18] and N. Ikeda-M. Nagasawa-S. Watanabe [4]-[7]. Applying their method, we shall consider in this paper the following problems (A) and (B).

(A): Let *E* be a compact Hausdorff space with the second axiom of countability and assume the following are given: (1) H_t : a strongly continuous semi-group on $C(E) = \{f; \text{ continuous function on } E\}$, (2) \mathcal{G} : the infinitesimal operator of H_t , (3) k(x), $q_n(x)$, $n = 0, 1, 2, \cdots$, are continuous functions on *E* such that $k(x) = \sum_{n=0}^{\infty} q_n(x)$ and $\sum_{n=0}^{\infty} |q_n(x)| < \infty$. How can we interpret probabilistically the following equation?

(1.1)
$$\frac{\partial u(t,x)}{\partial t} = \mathcal{G} u(t,x) + k(x)F(x;u(t,x)), \quad x \in E, t \ge 0,$$

where

(1. 2)
$$F(x;\xi) = \frac{1}{k(x)} \sum_{n=0}^{\infty} q_n(x)\xi^n, \quad x \in E, \ \xi \in R^1.$$

(B): How can we interpret probabilistcally the following equation?

(1.3)
$$\frac{\partial u(t,x)}{\partial t} = \frac{1}{2} \Delta u(t,x) + G(u(t,x)), \qquad x \in \mathbb{R}^d, \ t > 0, 1$$

where Δ denotes the Laplacian in x and $G(\xi)$ satisfies

(1. 4)
$$G(0) = G(1) = 0, \ G(\xi) > 0 \ \text{and} \ G'(0) > G'(\xi), \quad 0 < \xi < 1.$$

Received April 17, 1967.

¹⁾ R^d denotes the *d*-dimensional Euclidian space.