T. Sunada Nagoya Math. J. Vol. 64 (1976), 159-175

HOLOMORPHIC MAPPINGS INTO A COMPACT QUOTIENT OF SYMMETRIC BOUNDED DOMAIN

TOSHIKAZU SUNADA

1. Introduction

In this paper, we shall be concerned with the finiteness property of certain holomorphic mappings into a compact quotient of symmetric bounded domain.

Let \mathfrak{D} be a symmetric bounded domain in *n*-dimensional complex Euclidean space \mathbb{C}^n and $\Gamma \setminus \mathfrak{D}$ be a compact quotient of \mathfrak{D} by a torsion free discrete subgroup Γ of automorphism group of \mathfrak{D} . Further, we denote by $\ell(\mathfrak{D})$ the maximum value of dimension of proper *boundary component* of \mathfrak{D} , which is less than n (=dim \mathfrak{D}). Then, the exact statement of our assertion is the following:

THEOREM A. Let M be a compact Kähler manifold. Then there are only finite number of holomorphic mappings of M into $\Gamma \setminus \mathfrak{D}$ whose rank¹) are greater than $\ell(\mathfrak{D})$. In particular, the set of surjective holomorphic mappings is finite.

Remark. Notice that the compact quotient $\Gamma \setminus \mathfrak{D}$ is of general type. Hence, in the case of compact quotient Theorem A gives a generalization of a result of S. Kobayashi and T. Ochiai [6] which asserts the finiteness of surjective holomorphic mappings of M onto a compact complex space of general type.

For convenience' sake, we give a complete list of $\ell(\mathfrak{D})$ in each irreducible case. For our notation, we refer to S. Helgason [3].

Received March 29, 1976.

¹⁾ For a holomorphic mapping $\varphi: M \to I^{\mathbb{Q}}$, rank of φ is defined by $\sup_{z \in M} (\dim_z M - \dim_z \varphi^{-1}(\varphi(z))),$