G. W. Johnson and D. L. Skoug Nagoya Math. J. Vol. 60 (1976), 93-137

THE CAMERON-STORVICK FUNCTION SPACE INTEGRAL: AN $L(L_v, L_{v'})$ THEORY

G. W. JOHNSON AND D. L. SKOUG

0. Introduction.

In [3] Cameron and Storvick introduced a very general operatorvalued function space "integral". In [3-5, 8, 9, 11, 13-20] the existence of this integral as an operator from L_2 to L_2 was established for certain functions. Recently the existence of the integral as an operator from L_1 to L_{∞} has been studied [6, 7, 21]. In this paper we study the integral as an operator from L_p to $L_{p'}$ where 1 . The resulting theoremsextend the theory substantially and indicate relationships between the $<math>L_2$ - L_2 and L_1 - L_{∞} theories that were not apparent earlier. Even in the most studied case, p = p' = 2, the results below strengthen the theory.

Before giving the basic definitions, we fix some notation. \mathbb{R}^{ν} will denote ν -dimensional Euclidean space. \mathbb{C} will denote the complex numbers and \mathbb{C}^+ the complex numbers with positive real part. If Yand Z are Banach spaces, L(Y,Z) will denote the space of continuous linear operators from Y to Z. For ν a positive integer, let $C^{\nu}[a, b]$ denote the space of \mathbb{R}^{ν} -valued continuous functions on [a, b]. $C_{0}^{\nu}[a, b]$ will denote those X in $C^{\nu}[a, b]$ such that X(a) = 0. $C_{0}^{\nu}[a, b]$ will be referred to as "Wiener space" and integration over $C_{0}^{\nu}[a, b]$ will always be with respect to Wiener measure.

Let 1 be given. Let <math>F be a function from $C^{\nu}[a, b]$ to C. Given $\lambda > 0$, ψ in $L_{p}(\mathbf{R}^{\nu})$ and ξ in \mathbf{R}^{ν} , let

(0.1)
$$(I_{\lambda}(F)\psi)(\xi) \equiv \int_{C_{0}^{\nu}[a,b]} F(\lambda^{-1/2}X + \xi)\psi(\lambda^{-1/2}X(b) + \xi)dm(X) .$$

If $I_{\lambda}(F)\psi$ is in $L_{p'}(\mathbf{R}^{\nu})$ as a function of ξ and if the correspondence $\psi \to I_{\lambda}(F)\psi$ gives an element of $L \equiv L(L_{p}(\mathbf{R}^{\nu}), L_{p'}(\mathbf{R}^{\nu}))$, we say that the operator-valued function space integral $I_{\lambda}(F)$ exists.

Received September 18, 1974.