ON THE DISTRIBUTION OF ZEROS OF
 A STRONGLY ANNULAR FUNCTION

AKIO OSADA

A function $f(z)$, regular in the unit disk D, is called annular ([1], p. 340) if there is a sequence of closed Jordan curves $J_{n} \subset D$ satisfying
$\left(\mathrm{A}_{1}\right) \quad J_{n}$ is contained in the interior of J_{n+1} for every n,
$\left(\mathrm{A}_{2}\right)$ given $\varepsilon>0$, there exists a positive number $n(\varepsilon)$ such that, for each $n>n(\varepsilon), J_{n}$ lies in the region $1-\varepsilon<|z|<1$ and
$\left(\mathrm{A}_{3}\right) \quad \lim _{n \rightarrow \infty} \min \left\{|f(z)| ; z \in J_{n}\right\}=+\infty$.
One says that $f(z)$ is strongly annular if the J_{n} can be taken as circles concentric with the unit circle C. As for examples of annular functions, see ([4], p. 18).

Given a function $f(z)$ in D, denote by $Z(f)$ the set of zeros of $f(z)$ and $Z^{\prime}(f)$ the set of limit points of $Z(f)$. If $f(z)$ is annular, $Z(f)$ is an infinite set of points of $D\left([1]\right.$, p. 340) and clearly $Z^{\prime}(f) \subset C$. In [1], Bagemihl and Erdös raised the following question: If $f(z)$ is annular, is $Z^{\prime}(f)=C$? This question seems to be reasonable because many early examples of annular functions had this property. In [3], however, an example of an annular function $g(z)$ was constructed with $Z^{\prime}(g)=\{1\}$. It is not known, regretfully, whether or not this example is strongly annular. Thus the problem of Bagemihl and Erdös remains open in the case where "annular" is replaced by "strongly annular" ([5], p. 141). In this note we shall give an example of a strongly annular function $f(z)$ with $Z^{\prime}(f)=\{1\}$, modifying the technique for constructing the example of Barth and Schneider [3].

1. We shall first make some definitions. Given a, b and θ such that $0<a<b<1$ and $0<\theta<\pi / 2$, we consider the annular sector $D(a, b ; \theta)=\{z \in D ; a<|z|<b$ and $-\theta<\arg z<\theta\}$. Moreover, for c, θ_{1} and θ_{2} with $0<c<1$ and $-\pi / 2<\theta_{2}<\theta_{1}<\pi / 2$, let $\sigma\left(c ; \theta_{2}, \theta_{1}\right)$ denote the circular arc $\left\{z \in D ;|z|=c\right.$ and $\left.\theta_{2} \leqq \arg z \leqq \theta_{1}\right\}$. Now we are to state
