M. Itô and N. Suzuki Nagoya Math. J. Vol. 99 (1985), 89-110

THE SEMI-BALAYABILITY OF REAL CONVOLUTION KERNELS

MASAYUKI ITÔ AND NORIAKI SUZUKI

Dedicated to Professor Yukio Kusunoki on his 60th birthday

§1.

Let X be a locally compact, σ -compact and non-compact abelian group. Throughout this paper, we shall denote by ξ a fixed Haar measure on X and by δ the Alexandroff point of X.

A real convolution kernel (i.e., a real Radon measure) N on X is said to be semi-balayable if N satisfies the semi-balayage principle on all open sets (see Definition 6). We know that every convolution kernel Nof logarithmic type is semi-balayable (see [8]). Here N is said to be of logarithmic type if, with a vaguely continuous, markovian, semi-transient and recurrent convolution semi-group $(\alpha_t)_{t\geq 0}$ of non-negative Radon measures on X,

$$N*\mu=\int_{_{0}}^{_{\infty}}lpha_{t}*\mu dt\left(=\lim_{_{t o\infty}}\int_{_{0}}^{^{t}}lpha_{s}*\mu ds^{_{1}}
ight)$$

for all real Radon measure μ on X with compact support and $\int d\mu = 0$.

In this paper, we shall show that the semi-balayability is an essential property to characterize convolution kernels of logarithmic type. More precisely, we shall establish the following theorems.

THEOREM 1. Let N be a real convolution kernel on X. If $X \approx R \times F$ or $X \approx Z \times F$, we suppose an additional condition: N = o(|x|) at the infinity². Then N is of logarithmic type if and only if N is semi-balayable, non-periodic and satisfies $\inf_{x \in X} N * f(x) \leq 0$ for any finite continuous function f on X with compact support and $\int f d\xi = 0$.

Received May 28, 1984.

¹⁾ For a net $(\mu_{\alpha})_{\alpha \in \Lambda}$ of real Radon measures and a real Radon measure μ , we write $\mu = \lim_{\alpha \in \Lambda} \mu_{\alpha}$ if $(\mu_{\alpha})_{\alpha \in \Lambda}$ converges vaguely to μ along Λ .

²⁾ If $X = R \times F$ or $X = Z \times F$, N = o(|x|) at the infinity means that for any $f \in C_K^+(X)$, N*f((x, y)) = o(|x|) as $|x| \to \infty$, where $(x, y) \in R \times F$ or $\in Z \times F$. In the case of $X \approx R \times F$ or $X \approx Z \times F$, the definition N = o(|x|) at the infinity follows naturally from the above definition.