T. Watanabe

Nagoya Math. J.
Vol. 97 (1985), 95-135

ON A DUAL RELATION FOR ADDITION FORMULAS OF ADDITIVE GROUPS II

TOSHIHIRO WATANABE

Chapter 2. Sheffer Polynomials

Introduction

This paper is a continuation of our previous memoir [28], hereafter referred to as I, and constitutes the second chapter of this series. As stated in I, our aim in this series is to examine properties of a polynomial sequence with several variables satisfying an addition formula by means of the down-ladder, and to give a generalization of so called classical polynomials. In the present article, we study the two kinds of polynomial sequences:
(i) sequences $s_{\alpha}(x)$ of polynomials satisfying the identities

$$
s_{\alpha}(x+y)=\sum_{\alpha=\beta+\gamma} s_{\beta}(x) p_{r}(y),
$$

where $p_{\alpha}(x)$ is a given sequence of binomial type defined in I,
(ii) doubly indexed sequences $p_{\alpha}^{[2]}(x)$ of polynomials satisfying

$$
p_{\alpha}^{[\alpha+\mu]}(x+y)=\sum_{\alpha=\beta+r} p_{\beta}^{[\lambda]}(x) p_{r}^{[\mu]}(y) .
$$

In the case of one variable (cf. [11], [22]), the addition formula (i) or (ii) holds for many well known polynomials, for example, Hermite, Laguerre, Euler, Bernoulli, Poisson-Charlier, Krawtchouk, and Stirling polynomials etc.. In Section 8, some of these polynomials are generalized to the case of several variables.

Let us give a brief description of contents of this paper.
Section 1 deals with fundamental properties of a polynomial sequence $s_{a}(x)$ to satisfy the addition formula (i), that is called a Sheffer set. In this section, we have a relation between the Sheffer set $s_{\alpha}(x)$ and the polynomial sequence $p_{a}(x)$ of binomial type. Also, an expansion formula

[^0]
[^0]: Received November 2, 1983.

