T. Murai Nagoya Math. J. Vol. 96 (1984), 29-39

BOUNDEDNESS OF SINGULAR INTEGRAL OPERATORS OF CALDERON TYPE, III

TAKAFUMI MURAI

§1. Introduction

In this paper we investigate the boundedness of Cauchy kernels. The Cauchy kernel associated with a locally integrable real-valued function $\theta(x)$ is defined by

(1)
$$\mathbb{C}[\theta](x,y) = (1+i\theta(y))/\{(x-y)+i(\Theta(x)-\Theta(y))\},\$$

where $\Theta(x) = \int_0^x \theta(z) \, dz$. This kernel plays an important role in harmonic analysis on the graph $\{(x, \Theta(x)); x \in (-\infty, \infty)\}$. For p > 1 and a nonnegative function $\omega(x)$, let L^p_ω denote the space of functions f(x) with $\|f\|_{p\omega} = \left\{\int_{-\infty}^{\infty} |f(x)|^p \omega(x) \, dx\right\}^{1/p} < \infty$. In the case $\omega(x) \equiv 1$, we write simply L^p and $\|\cdot\|_p$. We say that $\mathfrak{E}[\theta]$ is of type (p, ω) if, for any $f \in L^p_\omega$,

(2)
$$\mathbb{G}[\theta]f(x) = \lim_{\varepsilon \to 0} \int_{\varepsilon < |x-y| < 1/\varepsilon} \mathbb{G}[\theta](x, y)f(y) \, dy$$

exists almost everywhere (a.e.) and $\|\mathbb{C}[\theta]\|_{p\omega} = \sup \{\|\mathbb{C}[\theta]f\|_{p\omega}/\|f\|_{p\omega}; 0 < \|f\|_{p\omega} < \infty \} < \infty$. We also write $\|\mathbb{C}[\theta]\|_p$ in the case $\omega(x) \equiv 1$. We say that $\omega(x)$ satisfies the Muckenhoupt (A_p) condition if

$$(\mathbf{A}_p) \qquad \qquad \sup_{I} (m_I \omega) (m_I \omega^{-1/(p-1)})^{p-1} < \infty ,$$

where "sup_I" denotes the supremum over all finite intervals I and $m_I \omega = (1/|I|) \int_I \omega(x) dx$ (|I|: the measure of I). It is well-known that Calderón-Zygmund kernels are of type (p, ω) if $\omega(x)$ satisfies (A_p) ([2]). We shall show that the analogous property is valid for some Cauchy kernels. We say that a locally integrable function f(x) is of bounded mean oscillation if $||f||_{\text{BMO}} = \sup_I m_I |f - m_I f| < \infty$. The space BMO of functions of bounded mean oscillation, modulo constants, is a Banach space with norm $|| \cdot ||_{\text{BMO}}$. We show

Received June 17, 1983.