T. Ono Nagoya Math. J. Vol. 95 (1984), 63-71

ON DEFORMATIONS OF HOPF MAPS AND HYPERGEOMETRIC SERIES

TAKASHI ONO

Introduction

Let \mathbb{R}^n denote the Euclidean space of dimension $n \ge 1$ with the standard inner product $\langle x, y \rangle$ and the norm $Nx = \langle x, x \rangle$. We shall denote by $d\omega_{n-1}$ the volume element of the unit sphere $S^{n-1} = \{x \in \mathbb{R}^n; Nx = 1\}$ normalized so that the volume of S^{n-1} is 1.

With each continuous map $f: S^{n-1} \to \mathbb{R}^m$, we shall associate a function $f^*(z)$ of a complex variable z by

$$f^{*}(z) = \int_{S^{n-1}} e^{z(f(x))} d\omega_{n-1}.$$

Clearly $f^*(z)$ is an entire function and its Taylor expansion is given by

$$f^{*}(z) = \sum_{k=0}^{\infty} N_k(f) rac{z^k}{k!}$$

where

$$N_k(f) = \int_{S^{n-1}} N(f(x))^k d\omega_{n-1}.$$

When f is spherical, i.e. when f maps S^{n-1} in S^{m-1} , we have $f^*(z) = e^z$. When we are given a family $\{f_t\}$, $0 \leq t \leq 1$, of maps: $S^{n-1} \rightarrow \mathbb{R}^m$ such that f_0 is spherical, we have a family $\{f_t^*\}$ of entire functions beginning with $f_0^* = e^z$ and ending with some advanced function f_1^* .

Here is an illustrative example: consider the family

$$f_t(x) = (x_1^2 - x_2^2, 2(1+t)^{1/2}x_1x_2)\,, \qquad 0 \leqq t \leqq 1\,.$$

The map $f_0: S^1 \to \mathbb{R}^2$ is spherical since it is the squaring $x \mapsto x^2$ in $C = \mathbb{R}^2$. Passing to the polar coordinates, we have $N(f_t(x)) = 1 + t \sin^2 2\theta$ and

Received March 2, 1983.