M. Itô Nagoya Math. J. Vol. 92 (1983), 153-161

TRANSIENT MARKOV CONVOLUTION SEMI-GROUPS AND THE ASSOCIATED NEGATIVE DEFINITE FUNCTIONS

MASAYUKI ITÔ

Dedicated to Professor Makoto Ohtsuka on the occasion of his 60th birthday

§1. Let X be a locally compact and σ -compact abelian group and \hat{X} be the dual group of X^{1} . We denote by ξ a fixed Haar measure on X and by $\hat{\xi}$ the Haar measure on \hat{X} associated with ξ . It is well-known that (see, for example, [1]):

(A) For a sub-Markov convolution semi-group $(\alpha_i)_{i\geq 0}$ on X, there exists a uniquely determined negative definite function ψ on \hat{X} such that

(1.1)
$$\hat{\alpha}_t(\hat{x}) = \exp\left(-t\psi(\hat{x})\right) \quad \text{for any } \hat{x} \in \hat{X} \ (t \ge 0) ,$$

where $\hat{\alpha}_i$ denotes the Fourier transform of α_i .

(B) For a negative definite function ψ on X, there exists a uniquely determined sub-Markov convolution semi-group $(\alpha_t)_{t\geq 0}$ on X satisfying (1.1).

In this case, ψ is called the negative definite function associated with $(\alpha_t)_{t\geq 0}$.

There is an interesting characterization of the transience of sub-Markov convolution semi-groups.

THEOREM. Let $(\alpha_t)_{t\geq 0}$ be a sub-Markov convolution semi-group on X and ψ be the negative definite function associated with $(\alpha_t)_{t\geq 0}$. Then $(\alpha_t)_{t\geq 0}$ is transient if and only if $\operatorname{Re}(1/\psi)$ is locally $\hat{\xi}$ -summable, where $\operatorname{Re}(1/\psi)$ denotes the real part of $1/\psi$.

The "only if" part is easily seen (see, for example, [1]). But it is known only to show the "if" part by probabilistic methods (see [3]).

The purpose of this note is to give a simple and non-probabilistic proof of the "if" part.

Received October 7, 1982.

¹⁾ We denote by + the product of X and that of \hat{X} .