I. Mitoma Nagoya Math. J. Vol. 82 (1981), 209-220

ON THE NORM CONTINUITY OF *S'*-VALUED GAUSSIAN PROCESSES

ITARU MITOMA

Summary

Let \mathscr{S} be the Schwartz space of all rapidly decreasing functions on $\mathbb{R}^n, \mathscr{S}'$ be the topological dual space of \mathscr{S} and for each positive integer p, \mathscr{S}'_p be the space of all elements of \mathscr{S}' which are continuous in the p-th norm defining the nuclear Fréchet topology of \mathscr{S} . The main purpose of the present paper is to show that if $\{X_i, t \in [0, +\infty)\}$ is an \mathscr{S}' -valued Gaussian process and for any fixed $\varphi \in \mathscr{S}$ the real Gaussian process $\{X_i(\varphi), t \in [0, +\infty)\}$ has a continuous version, then for any fixed T > 0 there is a positive integer p such that $\{X_i, t \in [0, T]\}$ has a version which is continuous in the norm topology of \mathscr{S}'_p .

§1. Introduction

Let E be a locally convex topological vector space, E' be the topological dual space of E and denote by C(E', E) the smallest σ -algebra of subsets of E' that makes all functions $\{\langle x, \xi \rangle : \xi \in E\}$ measurable, where $\langle x, \xi \rangle$ is the canonical bilinear form on $E' \times E$. An E'-valued stochastic process is a collection $X = \{X_t, t \in [0, +\infty)\}$ of measurable maps X_t from a complete probability space (Ω, \mathcal{B}, P) into the measurable space (E', C(E', E)). Throughout this paper R_+, T_+ and N denote the half line $[0, +\infty)$, the closed interval [0, T] and the set of all positive integers.

X is said to be *Gaussian* if the family of real random variables $\{\langle X_t, \xi \rangle : t \in R_+, \xi \in E\}$ forms a Gaussian system.

We shall study below sample path continuity of E'-valued Gaussian processes in case where E is a nuclear Fréchet space or a countable strict inductive limit of nuclear Fréchet spaces. In the following definitions we assume that E is one of such spaces. Then the Borel field of E' coincides with C(E', E). If X is Gaussian the probability law μ_i of X_i which is

Received January 5, 1980.