S. Shirai Nagoya Math. J. Vol. 71 (1978), 87-90

A REMARK CONCERNING THE 2-ADIC NUMBER FIELD

SUSUMU SHIRAI

1. Introduction

Let Q_2 be the 2-adic number field, T/Q_2 be a finite unramified extension, ζ_{ν} be a primitive 2^v-th root of unity, and let $K_{\nu} = T(\zeta_{\nu})$. In a previous paper [1, Theorem 11], we stated the following theorem without its proof.

THEOREM A. Let $R = T(\zeta_{\nu} + \zeta_{\nu}^{-1})$, and let σ be a generator of the cyclic Galois group G(R/T). Assume $\nu \geq 3$. If $N_{R/T}\varepsilon = 1$ for $\varepsilon \in U_R^{(4)}$, then

$$arepsilon\in ({N}_{K_{m{
u}}/R}K_{m{
u}}^{ imes})^{\sigma^{-1}}$$
 ,

where $U_{R}^{(i)}$ denotes the *i*-th unit group of R.

The aim of the present paper is to prove this theorem, which is a detailed version of Hilbert's theorem 90 in the 2-adic number field.

2. Preliminaries

Let $\theta = \zeta_{\nu} + \zeta_{\nu}^{-1}$. Since $1 - \zeta_{\nu}$ is a prime element of K_{ν} ,

 $N_{K_{\nu}/R}(1-\zeta_{\nu}) = (1-\zeta_{\nu})(1-\zeta_{\nu}^{-1}) = 2-\theta$

is a prime element of R. Set $\pi = 2 - \theta$ and denote by ν_{π} the normalized exponential valuation of R. The Galois group $G(K_{\nu}/T)$ is isomorphic to the group of prime residue classes mod 2^{ν} , and hence we can choose the generator σ of G(R/T) such that

$$heta^{\sigma}=(\zeta_{
u}+\zeta_{
u}^{-1})^{\sigma}=\zeta_{
u}^{5}+\zeta_{
u}^{-5}= heta^{5}-5 heta^{3}+5 heta$$
 ,

without loss of generality. Then

(1)
$$\pi^{\sigma} = \pi^5 - 10\pi^4 + 35\pi^3 - 50\pi^2 + 25\pi$$
.

LEMMA 1. Notation being as above, if $\nu \ge 3$, then Received June 10, 1977.