H. Naito Nagoya Math. J. Vol. 129 (1993), 97-113

ON A LOCAL HÖLDER CONTINUITY FOR A MINIMIZER OF THE EXPONENTIAL ENERGY FUNCTIONAL

HISASHI NAITO[†]

0. Introduction

Let $\Omega \subset \mathbf{R}^m$ be a bounded domain with smooth boundary, where $m \geq 2$. We consider the exponential energy functional

(0.1)
$$E(u) := \int_{\Omega} e^{|\nabla u|^2} dx$$

for $u: \Omega \to \mathbf{R}^n$, where $n \ge 2$.

For minima of certain functionals with suitable growth conditions, many authors have established regularity results [1,5,7,12]. For example, in [7], Hardt and Lin proved that mappings minimizing the L^{p} -norm of the gradient between compact Riemannian manifolds are smooth except singular sets with finite $(\dim M - [p] - 1)$ -dimensional Hausdorff measure.

If a functional has sufficiently rapid growth, we can expect full regularity of minima. In fact, quite recently, Duc and Eells [2], Eells and Lemaire [3] show that, in the case of n = 1, a minimizer u of E satisfies $u \in C^{\infty}(\Omega)$ for any smooth boundary data provided that $\Omega \subset \mathbf{R}^{m}$ is a strictly convex bounded domain.

In this paper, we consider a local regularity of minima of E for the case of $n \ge 2$. Our main theorem is stated as follows:

(0.2) THEOREM. For a given boundary data $g \in \bigcap_{1 , there exists a unique minimizer of <math>E$ on the space $\{u \in \bigcap_{1 . If <math>B_R(a) \subset \Omega$, then there exists a number μ satisfying $0 < \mu < 1$ such that the minimizer belongs to $C^{1,\mu}(B_{R/4}(a))$.

Received October 25, 1991.

[†] Partially supported by Yukawa Foundation and Japan Association for Mathematical Sciences.