DIFFEOMORPHISMS WITH PSEUDO ORBIT TRACING PROPERTY

KAZUHIRO SAKAI

We shall discuss a differentiable invariant that arises when we consider a class of diffeomorphisms having the pseudo orbit tracing property (abbrev. POTP).

Let M be a closed C^{∞} manifold and $\operatorname{Diff^1}(M)$ be the space of diffeomorphisms of M endowed with the C^1 topology. We denote $\mathcal{P}^1(M)$ the C^1 interior of the set of all diffeomorphisms having POTP belonging to $\operatorname{Diff^1}(M)$. Recently Aoki [1] proved that the C^1 interior of the set of all diffeomorphisms whose periodic points are hyperboric, $\mathcal{F}^1(M)$, is characterized as Axiom A diffeomorphisms with nocycle. After this Moriyasu [8] showed that $\mathcal{P}^1(M) \subset \mathcal{F}^1(M)$ and if dim M=2 then every $f \in \mathcal{P}^1(M)$ satisfies strong transversality.

In this paper the following two theorems will be proved.

Theorem A. There exists a closed C^{∞} 3-manifold M such that set of all diffeomorphisms having POTP is not dense in Diff $^{1}(M)$.

The Theorem answers to a problem stated in Morimoto [7].

THEOREM B. If M is a closed C^{∞} 3-manifold, then $\mathcal{P}^1(M)$ is characterized as Axiom A diffeomorphisms satisfying strong transversality.

A diffeomorphism f of M is quasi-Anosov if the fact that $\|Df^n(v)\|$ is bounded for all $n \in \mathbf{Z}$ implies that v = 0. Theorem A is easily obtained in combining with Franks and Robinson [2] and Sakai [12]. The set of all quasi-Anosov diffeomorphisms belonging to $\mathrm{Diff}^1(M)$, $\mathrm{QA}^1(M)$, is open and $\mathrm{QA}^1(M) \subset \mathcal{F}^1(M)$. It is easy to see that when $\dim M = 2$, every $f \in \mathrm{QA}^1(M)$ is Anosov (see [5]). However an example of a diffeomorphism f' on the connected sum M' of two 3-tori that is quasi-Anosov but not Anosov was given in Franks and Robinson [2]. Since f' is Ω -stable, there is C^1 neighborhood \mathcal{U} of f' in $\mathrm{Diff}^1(M')$ such that every $g \in \mathcal{U}$ is quasi-Anosov but not Anosov. Thus, by [12] every $g \in \mathcal{U}$ cannot have POTP,

Received February 21, 1991.