ON A CLASS OF INSOLUBLE BINARY QUADRATIC DIOPHANTINE EQUATIONS

FRANZ HALTER-KOCH

§ 0. Introduction

The binary quadratic diophantine equation

$$
\left|x^{2}-n y^{2}\right|=t
$$

is of interest in the class number problem for real quadratic number fields and was studied in recent years by several authors (see [4], [5], [2] and the literature cited there).

To be precise, for a positive square-free integer n, we set

$$
\sigma_{n}= \begin{cases}1, & \text { if } n \not \equiv 1 \bmod 4, \\ 2, & \text { if } n \equiv 1 \bmod 4 ;\end{cases}
$$

a solution $(x, y) \in \mathbf{Z}$ of the diophantine equation

$$
\left|x^{2}-n y^{2}\right|=\sigma_{n}^{2} t
$$

is called primitive, if $(x, y) \mid \sigma_{n}$, where (x, y) denotes the g.c.d. of x and y. The reason for this terminology will become clear from the theory of quadratic orders, to be explained in §1.
R.A. Mollin [4] proved, generalizing previous results by Yokoi [5] and others, the following criterion.

Proposition 0. Let s, t, r be integers such that $n=(s t)^{2}+r>5$ is squarefree and the following conditions are satisfied:
(1) $s \geq 1, t \geq 2$ and $(t, r)=1$;
(2) $r \mid 4 s$, and $-s t<r \leq s t$;
(3) If $n \equiv 1 \bmod 4$, then $|r| \in\{1,4\}$.
(4) If $|r|=4$, then $s \geq 2$.
(5) If $r=1$, then $\mathrm{s} \geq 3$ and $2 \mid$ st.

Then the diophantine equation $\left|x^{2}-n y^{2}\right|=\sigma_{n}^{2} t$ has a primitive solution if Received November 13, 1990.

