I. Kubo and Y. Yokoi Nagoya Math. J. Vol. 115 (1989), 139-149

A REMARK ON THE SPACE OF TESTING RANDOM VARIABLES IN THE WHITE NOISE CALCULUS

IZUMI KUBO AND YOSHITAKA YOKOI

Dedicated to Professor Takeyuki Hida on the occasion of his sixtieth birthday

§1. Introduction

The first author and S. Takenaka introduced the structure of a Gel'fand triplet $\mathscr{H} \subset (L^2) \subset \mathscr{H}^*$ into Hida's calculus on generalized Brownian functionals [4–7]. They showed that the space \mathscr{H} of testing random variables has nice properties. For example, \mathscr{H} is closed under multiplication of two elements in \mathscr{H} , each element of \mathscr{H} is a continuous functional on the basic space \mathscr{E}^* , in addition it can be considered as an analytic functional, and moreover $\exp[t\varDelta_{v}]$ (\varDelta_{v} is Volterra's Laplacian) is real analytic in $t \in \mathbf{R}$ as a one-parameter group of operators on \mathscr{H} , etc.

In this paper, we will prove, by a method different from [4-7], that each element of \mathscr{H} is continuous on the basic space \mathscr{E}^* and by using this result we will show that the evaluation map $\delta_x: \varphi \mapsto \varphi(x) \ (x \in \mathscr{E}^*)$ belongs to \mathscr{H}^* . The norm of δ_x will also be estimated.

The fact that δ_x belongs to \mathscr{H}^* is very useful in the argument of positive functionals [8].

§ 2. Gel'fand triplets

Here we will summarize fundamental facts about three Gel'fand triplets $\mathscr{F} \subseteq \mathscr{F}^{(0)} \subseteq \mathscr{F}^*$, $\exp\left[\hat{\otimes}\mathscr{E}\right] \subseteq \exp\left[\hat{\otimes}\mathcal{E}_0\right] \subseteq \exp\left[\hat{\otimes}\mathscr{E}^*\right]$ and $\mathscr{H} \subseteq (L^2)$ $\subset \mathscr{H}^*$, which were introduced and discussed in [4-7, 9], for later use. Let T be a separable topological space with a topological Borel field \mathscr{B} and ν be a σ -finite measure on T without atoms. We suppose that there exists a Gel'fand triplet (or a rigged Hilbert space) $\mathscr{E} \subset L^2(T, \nu) \subset \mathscr{E}^*$ (cf. [3]). Namely, the space \mathscr{E} of testing functions on T is topologized by the pro-

Received August 28, 1987.