A. Tyc Nagoya Math. J. Vol. 115 (1989) 125-137

ON F-INTEGRABLE ACTIONS OF THE RESTRICTED LIE ALGEBRA OF A FORMAL GROUP F IN CHARACTERISTIC p > 0

ANDRZEJ TYC

§ 1. Introduction

Let k be an integral domain, let $F=(F_1(X,Y),\cdots,F_n(X,Y)),\ X=(X_1,\cdots,X_n),\ Y=(Y_1,\cdots,Y_n),$ be an n-dimensional formal group over k, and let L(F) be the Lie algebra of all F-invariant k-derivations of the ring of formal power series $k\llbracket X \rrbracket$ (cf. § 2). If A is a (commutative) k-algebra and $\mathrm{Der}_k(A)$ denotes the Lie algebra of all k-derivations $d\colon A\to A$, then by an action of L(F) on A we mean a morphism of Lie algebras $\varphi\colon L(F)\to \mathrm{Der}_k(A)$ such that $\varphi(d^p)=\varphi(d)^p$, provided $\mathrm{char}\,(k)=p>0.$ An action of the formal group F on A is a morphism of k-algebras $D\colon A\to A\llbracket X\rrbracket$ such that $D(a)\equiv a \mod(X)$ for $a\in A$, and $F_A\circ D=D_Y\circ D$, where $F_A\colon A\llbracket X\rrbracket\to A\llbracket X,Y\rrbracket,\ D_Y\colon A\llbracket X\rrbracket\to A\llbracket X,Y\rrbracket$ are morphisms of k-algebras given by $F_A(g(X))=g(F),\ D_Y(\sum_a a_a X^a)=\sum_a D(a_a)Y^a,$ for a motivation of this notion, see [15]. Let $D\colon A\to A\llbracket X\rrbracket$ be such an action. Then, similarly as in the case of an algebraic group action, one proves that the map $\varphi_D\colon L(F)\to \mathrm{Der}_k(A)$ with $\varphi_D(d)(a)=\sum_a a_a d(X^a)|_{X=0}$ for $d\in L(F),\ a\in A,\$ and $D(a)=\sum_a a_a X^a,\$ is an action of L(F) on A.

Definition. An action $\varphi \colon L(F) \to \operatorname{Der}_{k}(A)$ of the Lie algebra L(F) on a k-alegbra A is said to be F-integrable if there exists an action $D \colon A \to A[\![X]\!]$ of the formal group F on A such that $\varphi = \varphi_{D}$.

Observe that if n=1, $F_a=X+Y$, and $F_m=X+Y+XY$, then an action of $L(F_a)$ (resp. $L(F_m)$) on a k-algebra A is nothing else than a k-derivation $d\colon A\to A$ with $d^p=0$ (resp. $d^p=d$) whenever char (k)=p>0. Moreover, one readily checks that such d is F_a -integrable (resp. F_m -integrable) if there exists a differentiation (= higher derivation) $D=\{D_i\colon A\to A,\ i=0,1,\cdots\}$ such that $D_1=d$ and $D_i\circ D_j=(i,j)D_{i+j}$ (resp.

Received September 14, 1987.