TWO-NUMBER OF SYMMETRIC R-SPACES

MASARU TAKEUCHI

Dedicated to Professor Shingo Murakami on his sixtieth birthday

Introduction

Chen-Nagano [2] introduced a Riemannian geometric invariant $\nu(M)$, called the 2 -number, for a compact (connected) symmetric space M : Points $p, q \in M$ are said to be antipodal to each other, if $p=q$ or there is a closed geodesic of M on which p and q are antipodal to each other. A subset A of M is called an antipodal subset if every pair of points of A are antipodal to each other. Now the 2-number $\nu(M)$ is defined as the maximum possible cardinality $|A|$ of an antipodal subset A of M. The 2 -number is finite.

In this note we will prove the following
Theorem. If M is a symmetric R-space (See § 1 for the definition), we have

$$
\nu(M)=\operatorname{dim} H\left(M, Z_{2}\right),
$$

where $H\left(M, Z_{2}\right)$ denotes the homology group of M with coefficients \boldsymbol{Z}_{2}.

§ 1. Symmetric R-spaces

A compact symmetric space M is said to have a cubic lattice if a maximal torus of M is isometric to the quotient of \boldsymbol{R}^{r} by a lattice of \boldsymbol{R}^{r} generated by an orthogonal basis of the same length. A Riemannian product of several compact symmetric spaces with cubic lattices is called a symmetric R-space. We here recall some properties of symmetric R spaces (cf. Takeuchi [4], [6], Loos [2]).

A symmetric R-space M has the complexification \bar{M} : There exists uniquely a connected complex projective algebraic manifold \bar{M} defined over \boldsymbol{R} such that the set $\bar{M}(\boldsymbol{R})$ of \boldsymbol{R}-rational points of \bar{M} is identified

