Z. J. Jurek Nagoya Math. J. Vol. 114 (1989), 53-64

RANDOM INTEGRAL REPRESENTATIONS FOR CLASSES OF LIMIT DISTRIBUTIONS SIMILAR TO LÉVY CLASS L_0 , II

ZBIGNIEW J. JUREK¹

§0. Introduction

Let $\xi(t)$ and $\eta(t)$ be two stochastic processes such that ξ has stationary independent increments and $\xi(0) = 0$ a.s. Suppose that $\xi(1) \stackrel{d}{=} t\xi(t^{\beta}) + \eta(t)$ for each $0 < t \le 1$, with $\xi(t^{\beta})$ independent of $\eta(t)$ and a fixed parameter $\beta \in (-2, 0)$. It is shown that $\xi(1)$ satisfies the above equation if and only if $\xi(1)$ is a sum of two independent r.v.'s: strictly stable one with the exponent $-\beta$ and the one given by a random integral $\int_{(0,1)} tdY(t^{\beta})$, where Y has stationary independent increments and $E[||Y(1)||^{-\beta}] < \infty$.

The aim of this paper is to find a random integral representation for some classes of limit distributions. Such representations give a very natural connection between theory of limit distributions and theory of stochastic processes. In some sense this note complements the subject, with a long history, of characterizations of stochastic processes by random integrals; cf. B.L.S. Praksa Rao (1983). On the other hand, this is a continuation of the study begun in Jurek (1988) but basically in a case of a Hilbert space and the identity operator. Recall that an infinitely divisible measure μ belongs to the class \mathscr{U}_{β} if and only if

$$(0.1) \qquad \qquad \forall (0 {<} c {<} 1) \exists \mu_c \in ID, \qquad \mu = T_c \mu^{* c^\beta} * \mu_c \,.$$

Here T_c is the linear operator of multiplying by a scalar c. In terms of stochastic processes the equation (0.1) can be rewritten as follows: There exist processes $\xi(t)$ and $\eta(t)$ such that ξ has stationary independent increments ($\mu = \mathscr{L}(\xi(1))$) and $\xi(1) \stackrel{d}{=} c\xi(c^{\beta}) + \eta(c)$ for $0 < c \leq 1$, with $\eta(c)$

Received August 15, 1986.

Revised February 8, 1988.

 $^{^{\}rm 1}$ This research was partially conducted at the Center for Stochastic Processes at the University of North Carolina, Chapel Hill N.C., USA, and supported by AFOSR Grant No. F49620 85 C 0144.