A CHARACTERIZATION OF COMPLETE RIEMANNIAN MANIFOLDS MINIMALLY IMMERSED IN THE UNIT SPHERE*

QING-MING CHENG

§1. Introduction

Let M^n be an n-dimensional Riemannian manifold minimally immersed in the unit sphere $S^{n+p}(1)$ of dimension n+p. When M^n is compact, Chern, do Carmo and Kobayashi [1] proved that if the square $\|h\|^2$ of length of the second fundamental form h in M^n is not more than $\frac{n}{2-1/p}$, then either M^n is totally geodesic, or M^n is the Veronese surface in $S^4(1)$ or M^n is the Clifford torus $S^k(\sqrt{k/n}) \times S^{n-k}(\sqrt{(n-k)/n})$ in $S^{n+1}(1)$ (0 < k < n).

In this paper, we generalize the results due to Chern, do Carmo and Kobayashi [1] to complete Riemannian manifolds.

Acknowledgement. The author would like to express his gratitude to Professors K. Shiohama and H. Nakagawa for their valuable suggestions.

§2. Preliminaries

Let M^n be an n-dimensional Riemannian manifold which is minimally immersed in the unit sphere $S^{n+p}(1)$ of dimension n+p. Then the second fundamental form h of the immersion is given by $h(X, Y) = \tilde{V}_X Y - V_X Y$ and it satisfies h(X, Y) = h(Y, X), where \tilde{V} and V denote the covariant differentiations on $S^{n+p}(1)$ and M^n respectively, X and Y are vector fields on M^n . We choose a local field of orthonormal frames e_1, \ldots, e_{n+p} in $S^{n+p}(1)$ such that, restricted to M^n , the vectors e_1, \ldots, e_n are tangent to M^n . We use the following convention on the range of indices unless otherwised stated: $A, B, C, \cdots = 1, 2, \ldots, n+p$; $i,j,k,\cdots = 1,2,3,\ldots,n$; $\alpha,\beta,\cdots = n+1,\ldots,n+p$. We agree the

Received November 21, 1988.

^{*} The project Supported by NNSFC.