Y. Kitaoka Nagoya Math. J. Vol. 146 (1997), 131–148

FINITE ARITHMETIC SUBGROUPS OF GL_n , V

YOSHIYUKI KITAOKA

Abstract. Let K be a finite Galois extension of the rational number field **Q** and G a $Gal(K/\mathbf{Q})$ -stable finite subgroup of $GL_n(O_K)$. We have shown that G is of A-type in several cases under some restrictions on K. In this paper, we show that it is true for n = 2 without any restrictions on K.

Let K be a finite Galois extension of the rational number field \mathbf{Q} with Galois group Γ and let G be a Γ -stable finite subgroup of $GL_n(O_K)$. Here O_K stands for the ring of integers in K and we define the action of $\sigma \in \Gamma$ on $g = (g_{ij}) \in GL_n(O_K)$ by $\sigma(g) := (\sigma(g_{ij}))$. G being Γ -stable means that $\sigma(g) \in G$ for every $\sigma \in \Gamma$ and every $g \in G$. To state the property of such a group, we introduce the notion of A-type. Let H be a subgroup of $GL_n(O_K)$. We denote by $L = \mathbf{Z}[e_1, \ldots, e_n]$ a free module over \mathbf{Z} and we make $h = (h_{ij}) \in H$ act on $O_K L$ by $h(e_i) = \sum_{j=1}^n h_{ij}e_j$. If there exists a decomposition $L = \bigoplus_{i=1}^k L_i$ such that for every $h \in H$, we can take roots of unity $\epsilon_i(h)$ $(1 \leq i \leq k)$ and a permutation s(h) so that $\epsilon_i(h)hL_i = L_{s(h)(i)}$ for $i = 1, 2, \ldots, k$, then we say that H is of A-type.

We have shown in [4] that if Γ is nilpotent, then G is of A-type. The aim of this paper is to show the following

THEOREM. Let K be a finite Galois extension of the rational number field \mathbf{Q} with Galois group Γ and let G be a Γ -stable finite subgroup of $GL_2(O_K)$. Then G is of A-type.

Through this paper, algebraic number fields are finite over the rational number field \mathbf{Q} . For an algebraic number field K, we denote the ring of integers in K by O_K . When K is the rational number field \mathbf{Q} , we use \mathbf{Z} instead of $O_{\mathbf{Q}}$, as usual. An algebraic number field is called abelian if it is a Galois extension over \mathbf{Q} with abelian Galois group. Let K be an algebraic number field and \mathbf{p} an integral ideal of K, and let G be a subgroup of $GL_n(O_K)$. Then we set

$$G(\mathfrak{p}) := \{g \in G \mid g \equiv 1_n \bmod \mathfrak{p}\},\$$

Received June 5, 1995.